期刊文献+

氮掺杂单层石墨烯储钠性能的第一性原理研究 被引量:1

First principle calculations on Na storage on the surface of N doped monolayer graphene
下载PDF
导出
摘要 采用密度泛函理论(DFT)的第一性原理方法,对Na在本征石墨烯和不同掺杂浓度的N掺杂石墨烯(NG)表面的吸附性质进行了研究。确定了不同N掺杂浓度时NG的最稳定N分布结构,计算了Na在PG和不同掺杂浓度的NG表面的吸附能。计算结果表明,N原子掺杂倾向于取代对位或次临近位置的C原子;随着N掺杂浓度的增加,吸附高度逐渐增加,且与N掺杂分布相匹配;N掺杂浓度大于C∶N=2∶1(摩尔数比)时,Na在NG表面的吸附相对稳定,Na与C_9N_9表面的结合最稳定。 The adsorption properties of Na on the surface of pristine graphene(PG)and N doped graphene(NG)with different doping concentrations were studied by using the first principles method based on density functional theory(DFT).The most stable N distribution structures of NG at different N doping concentrations were determined,and the adsorption energies of Na on the surface of PG and NG with different doping concentrations were calculated.The results revealed that doping N atoms tend to replace the C atoms at the para or sub-adjacent positions.With the increase in the N doping concentration,the adsorption heights increase gradually and match the distribution for doping N atoms.When the N doping concentration is larger than C∶N=2∶1(molar ratio),Na adsorption on the NG surface is more stable,and the binding between Na and the surface of C_9N_9 is the most stable.
作者 孟玲 MENG Ling(Lianyungang Technical College, Lianyungang 222006, Chin)
出处 《化学研究与应用》 CSCD 北大核心 2017年第12期1884-1889,共6页 Chemical Research and Application
基金 江苏高校"青蓝工程"资助
关键词 第一性原理 石墨烯 N掺杂石墨烯 Na吸附 掺杂浓度 first principle graphene nitrogen doped graphene adsorption of Na doping concentration
  • 相关文献

参考文献4

二级参考文献29

  • 1戴宪起,琚伟伟,吴新华,李同伟.Si(001)表面In量子线的第一原理研究[J].原子与分子物理学报,2006,23(4):673-678. 被引量:1
  • 2Li D, Kaner R B. Graphene-based materials[J]. Science, 2008, 320:1170.
  • 3Georgakilas V, Gournisb D, Tzitziosa V. Decorating carbon nanotubes with metal or semiconductor nanoparticle[J]. J. Mater. Chem., 2007, 26: 2679.
  • 4Niyogi S, Bekyarova E, Itkis M E. Solution properties of graphite and graphene[J]. J. Am. Chem. Soc., 2006, 128:7720.
  • 5Dikin D A, Stankovich S, Zimney E J, et al. Preparation and characterization of graphene oxide paper [J]. Nature, 2007, 448.
  • 6Li D, Muller M B, Gilje S, etal. Processable aqueous dispersions of graphene nanosheets[J]. Nat. Nanotechnol, 2008, 3:101.
  • 7Shirasaki T, Derre A, Menetrier M, et al. Synthesis and characterization of boron-substituted carbons [J]. Carbon, 2000, 38:1461.
  • 8Morinobu E, Takuya H, Seong-Hwa H, et al. Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite[J]. J. Appl. Phys. , 2001, 90:5670.
  • 9Czerw R, Terrones M, Charlier J C, etal. Identification of electron donor states in N-doped carbon nanotubes[J]. Nano. Lett., 2001, 1: 457.
  • 10Naeini J G, Way B M, Dahn J R, et al. Raman scattering from boron-substisuted carbon films[J]. Phys. Rev. B, 1996, 54:144.

共引文献31

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部