期刊文献+

基于领域相似性迁移学习的行为识别 被引量:1

Human action recognition based on a transfer learning algorithm using domain similarity
下载PDF
导出
摘要 提出了1种基于领域相似性的迁移学习算法,利用其他领域中的相关数据帮助完成当前领域的行为识别任务。首先通过典型相关性分析,得到领域间相似性的约束并与目标分类模型相联系,以充分利用相关领域中的有效信息;然后学习1种具有重建性、判别性、域适应性的跨域字典对,将不同领域的数据特征映射到同一空间;最后根据映射特征和分类模型对行为进行识别。利用网络中的大量图像,在UCF Sports Action数据集上的实验结果表明了算法的有效性。 Anew transfer learningalgorithmbasedondomain similarity isproposed inthispaper,whichutilizesrelevantdata from other domains to enhance the original learning system, First,by using canonical correlation analysis to add additional con-straints on the target classifiers,we can leverage the useful knowledge from the related domains. Then,we learn a reconstruc-tive, discriminative and domain-adaptive cross-domain dictionary pair to map data from different domains into a same abstractspace. Finally,the human behavior is classified according the mapping features and classification images from Web pages,and evaluate the proposed method for human a:tion recognition on the UCFchieving effective results.
作者 高亦超 陈昌红 干宗良 刘峰 GAO Yichao;CHEN Changhong;GAN Zongliang;LIU Feng(School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003 , China)
出处 《中国科技论文》 北大核心 2017年第20期2385-2390,共6页 China Sciencepaper
基金 国家自然科学基金项目(61471201 61401227) 江苏高校优势学科建设工程资助项目--"信息与通信工程"
关键词 领域相似性 跨域字典对 迁移学习 行为识别 domain similarity cross-domain dictionary pair transfer learning action recognition
  • 相关文献

参考文献4

二级参考文献316

  • 1王素玉,沈兰荪.智能视觉监控技术研究进展[J].中国图象图形学报,2007,12(9):1505-1514. 被引量:82
  • 2Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 3Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 4Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 5Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 6Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 7Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 8Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 9Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.
  • 10Bel N,Koster CHA,Villegas M.Cross-Lingual text categorization.In:Proc.of the European Conf.on Digital Libraries.Berlin:Springer-Verlag,2003.126-139.[doi:10.1007/978-3-540-45175-4_13].

共引文献965

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部