期刊文献+

天文瞬变源快速自动识别系统的研究与实现 被引量:1

Study and Development of a Fast and Automatic Astronomical-transient-identification System
下载PDF
导出
摘要 大视场和高时间采样率是现代天文光学瞬变源巡天项目的两个主要发展方向,相对传统的巡天项目将会产生更大的数据量和要求更快的瞬变源识别处理速度.为满足新技术下的瞬变源识别处理要求,本文提出用基于等光度测量星像轮廓等13个新的特征参量取代原有的轮廓拟合参量;使用实际星像轮廓仿真和构建较真实的训练样本算法;加入基于实测数据分析的噪声过滤判据等方法.实现了基于随机林森算法的天文光学瞬变源自动快速识别系统.通过仿真和实测数据的测试表明:本识别系统较国际主流的同类识别算法提速约10倍,样本识别的总体正确检出率和错误检出率都基本相同,而在低信噪比处,本文的识别算法有较良好的表现.本识别系统已成功应用于我国的迷你地基广角相机阵(地基广角相机阵的先导项目),同时,本系统对于其他天文光学瞬变源巡天项目也有着重要的应用价值. With the development of observational technology, modern transient survey projects are required to select the transient candidates fast and automatically from large volume data with noise. We present a fast and automatic identification system to search transients by the following methods: introducing 13 new features to measure objects' profiles by isophotometry in the place of PSF fit, using high simulation data based on real objects' profiles as training sample, and designing a special noise filter function. The identification system is realized by supervised machine learning technique of random forest. Our test demonstrates that the processing speed is 10 times faster than the popular identification system in the world, while their true and false positive rates are at the same level. Additionally, our system shows good performance for low signal-to-noise-ratio data due to its isophotometry's features. Our system has been successfully operating in the Mini-GWAC (Miniature ground wide angle camera) online data processing pipeline.
作者 吴潮 马冬 田海俊 李乡儒 魏建彦 WU Chao;MA Dong;TIAN Hai-Jun;LI Xiang-Ru;WEI dian-Yan(National Astronomical of Sciences, Beijing 100012 China, Yichang 443002;3. Guangzhou 510631 Observatories, Chinese Academ;2. Three Gorges University of South China Normal Universit)
出处 《自动化学报》 EI CSCD 北大核心 2017年第12期2170-2177,共8页 Acta Automatica Sinica
基金 国家自然科学基金(U1431108 U1231123 U1331202 61273248 11503012 U1731124) 广东省自然科学基金(2014A030313425)资助~~
关键词 机器学习 随机森林 瞬变源自动搜寻 星像轮廓 等光度测光 Machine learning, random forest, robotic identification of transient, profile of star, isophotometry
  • 相关文献

参考文献3

二级参考文献57

  • 1刘微,罗林开,王华珍.基于随机森林的基金重仓股预测[J].福州大学学报(自然科学版),2008,36(S1):134-139. 被引量:8
  • 2林成德,彭国兰.随机森林在企业信用评估指标体系确定中的应用[J].厦门大学学报(自然科学版),2007,46(2):199-203. 被引量:37
  • 3Breiman L. Bagging Preditors [J].Machine Learning, 1996,24(2).
  • 4Dietterich T. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting and Randomization [J].Machine Learning, 2000,40(2).
  • 5Ho T K. The Random Subspace Method for Constructing Decision Forests [J].Trans. on Pattern Analysis and Machine Intelligence, 1998,20 (8).
  • 6Amit Y, Gernan D. Shape Quantization and Recognition with Randomized Trees[J]. Neural Computation, 1997,9(7). Breiman L Random Forest[J]. Machine Learning, 2001,45(1).
  • 7Breiman L. Random Forests[J]. Machine Learning, 2001,45(1).
  • 8Tibshirani tL Bias, Variance, and Prediction Error for Classification Rules[C]. Technical Report, Statistics Department, University of Toronto, 1996.
  • 9Wolpert D H, Macready W G. An Efficient Method to Estimate Bagging's Generalization Error[J]. Machine Learning, 1999,35(1).
  • 10Breiman L. Out-of-bag Estimation[EB/OL]. [2010- 06- 30]. http//stat, berkeley, edu/ pub/ users/ breiman / OOB estimation, ps.

共引文献747

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部