摘要
Conventional time-space domain and frequency-space domain prediction filtering methods assume that seismic data consists of two parts, signal and random noise. That is, the so-called additive noise model. However, when estimating random noise, it is assumed that random noise can be predicted from the seismic data by convolving with a prediction error filter. That is, the source-noise model. Model inconsistencies, before and after denoising, compromise the noise attenuation and signal-preservation performances of prediction filtering methods. Therefore, this study presents an inversion-based time-space domain random noise attenuation method to overcome the model inconsistencies. In this method, a prediction error filter (PEF), is first estimated from seismic data; the filter characterizes the predictability of the seismic data and adaptively describes the seismic data's space structure. After calculating PEF, it can be applied as a regularized constraint in the inversion process for seismic signal from noisy data. Unlike conventional random noise attenuation methods, the proposed method solves a seismic data inversion problem using regularization constraint; this overcomes the model inconsistency of the prediction filtering method. The proposed method was tested on both synthetic and real seismic data, and results from the prediction filtering method and the proposed method are compared. The testing demonstrated that the proposed method suppresses noise effectively and provides better signal-preservation performance.
常规的时间-空间域和频率-空间域预测滤波方法假设地震记录由地震信号和随机噪声两部分构成,即所谓的加噪声模型,但是,在对随机噪声进行估算时,又假设随机噪声可以通过预测误差滤波器由地震记录中进行预测,即所谓的源噪声模型。这种前后不一致的噪声模型降低了该类方法的去噪能力和保幅性能。为此,本文提出了一种基于反演的时空域随机噪声衰减方法。它首先从地震数据中估算预测滤波算子,该算子表征了地震信号的可预测性,自适应地描述了地震信号的空间结构。在得到预测误差算子之后,将该算子作为正则化约束引入到地震信号反演系统,由含有随机噪声的地震数据直接反演地震信号。不同于常规随机噪声衰减方法,该方法将随机噪声衰减问题归结为正则化约束下的地震信号反演问题,克服了常规方法噪声模型的不一致性问题。我们采用模型数据和实际数据进行了实验分析,并与常规方法进行了效果对比。实验结果表明:与常规方法相比,本文方法在噪声压制的同时,没有对有效信号产生明显伤害,具有更好的振幅保持能力。
基金
supported by the National Natural Science Foundation of China(No.41474109)
the China National Petroleum Corporation under grant number 2016A-33