期刊文献+

基于粒子滤波算法的锂离子电池剩余寿命预测方法研究 被引量:16

Research on prediction of the remaining useful life of lithium-ion batteries based on particle filtering
下载PDF
导出
摘要 运用粒子滤波算法,进行了锂离子电池剩余寿命(RUL)的预测,提出了一种基于模型法和数据驱动法相融合的简单有效的RUL预测方法。该方法通过模型法和数据驱动法的融合,将双指数经验退化模型进行变形,以减少模型参数,降低参数训练难度,利用粒子滤波算法跟踪电池容量衰退的过程;为提高预测精确度,引入自回归(AR)时间序列模型修正状态空间方程的观测值。实验证实,该方法可以有效地预估出锂电池的剩余寿命。 The ies, and particle filtering is used to stud a simple and effective algorithm y the p fusing rediction of the remaining useful life (RUL) lithium-ion batterthe model method and the data-driven method for RUL predicting is proposed. The algorithm uses the fusion of the model method and the data-driven method to modify the double exponential empirical degradation model to reduce the model parameters and the parameter training difficulty, uses the particle filter algorithm to track the modify the observation value of the results show that the proposed algori battery capacity degradation process, and uses the auto regression model to state space equation to improve the prediction accuracy. The experimental thm can effectively predict the remaining useful life of lithium batteries.
作者 张凝 徐皑冬 王锴 韩晓佳 Seung Ho Hong Zhang Ning;Xu Aidong;Wang Kai;Han Xiaojia;Seung Ho Hong(Industrial Control Networks and Systems Department, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016;University of Chinese Academy of Sciences, Beijing 100049;Department of Electronic Systems Engineering, Hanyang University, Ansan 15588, Korea)
出处 《高技术通讯》 北大核心 2017年第8期699-707,共9页 Chinese High Technology Letters
基金 国家自然科学基金(71651147005)资助项目
关键词 锂离子电池 剩余寿命(RUL) 粒子滤波 双指数经验模型 lithium-ion battery, remaining useful life (RUL), particle filter, double exponential empirical model
  • 相关文献

参考文献4

二级参考文献63

  • 1石璞,董再励.基于EKF的AMR锂电池SOC动态估计研究[J].仪器仪表学报,2006,27(z1):1-3. 被引量:13
  • 2陈全世,林成涛.电动汽车用电池性能模型研究综述[J].汽车技术,2005(3):1-5. 被引量:85
  • 3蒋新华,冯毅,解晶莹.电压检测电路对锂离子电池组的影响[J].电池,2005,35(2):135-136. 被引量:10
  • 4吴国良.锂离子电池荷电贮存性能的研究[J].电池,2007,37(4):275-277. 被引量:12
  • 5GOEBEL K, SAHA B, SAXENA A, et al. Prognostics in battery health management [ J ]. Instrumentation & Meas- urement Magazine, IEEE, 2008,11 ( 4 ) : 33-40.
  • 6AS' AD M S. Fault detection, isolation and recovery (FDIR) in on-board software [ D ]. Chalmers University of Technology, 2005.
  • 7LIU G. A study on remaining useful life prediction for prognostic applications [ D ]. University of New Orleans Theses and Dissertations,2011,4.
  • 8LIU J, SAXENA A, GOEBEL K, et al. An sdaptive recur- rent neural network for remaining useful life prediction of lithium-ion batteries [ C ]. Annual Conference of the Prog- nostics and Health Management Society,2010.
  • 9PATrIPATI B, PATrIPATI K, CHRISTOPHERSON J P, et al. Automotive battery management systems [ C ]. IEEE Autotestcon,2008:521-526.
  • 10SAHA B, GOEBEL K. Modeling Li-ion battery capacity depletion in a particle filtering framework [ C ]. Annual Conference of the Prognostics and Health Management Society ,2009.

共引文献86

同被引文献128

引证文献16

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部