期刊文献+

高一学生关于平面概念的意象 被引量:4

原文传递
导出
摘要 1引言 “平面”是高中数学立体几何中学生正式接触到的第一个抽象概念.人教版《数学2》(必修)从生活情境引人平面,并利用生活中的实例引出平面的性质,这样的设计突出了平面的生活气息,但从生活中的平面抽象到数学中的平面,学生在对平面的进一步认识上存在障碍.在教学中,受希尔伯特几何公理体系的影响,平面概念是作为不加定义的原始概念出现的.于是,教师通常忽视此概念的教学以及学生的原有认识.
出处 《数学通报》 北大核心 2017年第12期21-26,共6页 Journal of Mathematics(China)
基金 上海市教育科学研究重大项目“中小学数学教科书的有效设计”子课题“中小学数学教科书中数学文化素材的案例设计”(项目号:D1508)系列论文之一
  • 相关文献

参考文献1

二级参考文献11

  • 1Biggs,J.B,& Collis,K.F..Evaluating the Quality of Learning:the SOLO Taxonomy.New York:Academic Press.1982.
  • 2Biggs,J.B,& Collis,K.F,.Multimodal learning and the quality of intelligent behaviour.In H.Rowe(Ed.),Intelligence,Reconceptualization and Measurement.New Jersey:Laurence Erlbaurn Assoc.1991,pp.57-76.
  • 3Pegg,J..Assessing students' understanding at the primary and secondary level in the mathematical sciences.In J.Izard & M.Stephens(Eds),Reshaping Assessment Practice:Assessment in the Mathematical Sciences Under Challenge.Melbourne:Australian Council of Educational Research.1992,pp.368-385.
  • 4Pegg,J.& Davey,G..Interpreting Student Understanding in Geometry:A synthesis of Two Models.In R.Lehrer & C.Chazan,(Eds),Designing Learning Environments for Developing Understanding of Geometry and Space.New Jersey:Lawrence Erlbaum.1998,pp.109-135.
  • 5Case,R..The Mind' s Staircase:Exploring the conceptual underpinnings of children' s thought and knowledge.New Jersey:Laurence Erlbaum Assoc.1992.
  • 6Fischer,K.W.& Knight,C.C..Cognitive development in real children:Levels and variations.In B.Presseisen(Ed.),Learning and thinking styles:Classroom interaction.Washington:National Education Association.1990,pp.43-67.
  • 7Anderson,K.R..Cognitive psychology and its implications.San Francisco:Freeman.1980.
  • 8Campbell,K,Watson,J.& Collis,K..Volume measurement and intellectual development.Journal of-Structural Learning and Intelligent Systems,11,1992,pp279-298.
  • 9Panizzon,D.L..Senior secondary and early tertiary science students' developmental understandings of diffusion and osmosis:A neo-Piagetian approach.Unpublished thesis for the degree of PhD,University of New England,Armidale,Australia.1999.
  • 10Chick,H.Cognition in the formal modes:research mathematics and the SOLO taxonomy,Mathematics Education Research Journal.1998,Vol.10(2),pp.4-26.

同被引文献15

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部