摘要
为了解决前方车辆检测的鲁棒性和实时性问题,提出了一种基于车辆形态特征和类HAAR特征融合的前方车辆检测优化算法.为了克服车底阴影提取易受外部环境因素影响的缺陷,采用猴王遗传算法(monkey king genetic algorithm,MKGA)进行阈值分割,提取车底阴影部分;然后通过车辆形态特征一次筛选得到感兴趣区域,并对感兴趣区域的类HAAR特征进行提取和降维,输入支持向量机(support vector machine,SVM)训练好的汽车分类器进行二次筛选.随机抽取视频的300帧进行算法验证,实验结果表明:算法在复杂环境下能够实现车辆检测,并且相比于单一特征的检测方法,准确率由80%提高至90%;利用类HAAR特征积分图和主成分分析(principal component analysis,PCA)降维能够有效地提高检测速度.算法满足驾驶辅助系统准确性和实时性的要求.
To achieve robust and real-time detection of front vehicles, an algorithm is proposed based on morphological features and HAAR-like features of vehicles. To avoid interference of external environmental factors in the extraction of shadows underneath the vehicle, the monkey king genetic algorithm (MKGA) threshold segmentation is used. Regions of interest are obtained using morphological characteristics in the initial screening. HAAR-like features of these regions are extracted, and the dimension is reduced. In the secondary screening, an auto classifier trained by support vector machine (SVM) is input. A total of 300 frames are randomly selected to verify the algorithm. Experimental results show that the algorithm can detect vehicles in a complicated environment. Compared to single feature detection, accuracy is raised from 80% to 90%. The HAAR-like integral diagram and PCA for dimension reduction can effectively improve detection speed. The algorithm meets the driving assistance system requirements both in accuracy and speed.
作者
刘冬军
徐美华
龚露鸣
夏臣君
LIU Dongjun;XU Meihua;GONG Luming;XIA Chenjun(School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, Chin)
出处
《上海大学学报(自然科学版)》
CAS
CSCD
北大核心
2017年第6期893-904,共12页
Journal of Shanghai University:Natural Science Edition
基金
国家自然科学基金资助项目(61376028)
上海市经济和信息化委员会资助项目(11XI-15)
关键词
交通工程
前方车辆检测
猴王遗传算法
形态特征
类HAAR特征
主成分分析
traffic engineering
front vehicle detection
monkey king genetic algorithm (MKGA)
morphological feature
HAAR-like feature
principal component analysis (PCA) for dimension reduction