期刊文献+

非线性不等式约束优化问题的指数型精确罚函数算法 被引量:3

Algorithm of exponential-type exact penalty function for nonlinear inequality constrained optimization
下载PDF
导出
摘要 针对非线性不等式约束优化问题,通过增加一个变量构造了一种新的指数型罚函数,进而证明了该罚函数的光滑性和精确性.进一步,设计了一种求解非线性不等式约束优化问题的精确罚函数算法.数值计算的结果表明了该算法的可行性. To deal with nonlinear inequality constrained optimization problems, we con- struct a new exponential-type penalty function by adding a variable, and prove smoothness and accuracy of the penalty function. In addition, an exact penalty function algorithm is proposed to solve nonlinear inequality constrained optimization problems. Numerical re- sults are reported to show effectiveness of the algorithm.
作者 杨莲 姚奕荣 YANG Lian;YAO Yirong(College of Sciences, Shanghai University, Shanghai 200444, Chin)
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第6期911-919,共9页 Journal of Shanghai University:Natural Science Edition
关键词 非线性优化 光滑精确罚函数 罚函数算法 M-F(Mangasarian-Fromovitz)条件 nonlinear optimization smooth exact penalty function penalty function algorithm Mangasarian-Fromovitz (M-F) condition
  • 相关文献

参考文献2

二级参考文献17

  • 1Han S P,Math Program,1979年,17卷,251页
  • 2Di Pillo G. ExactPenaltyMethods[M]. Netherlands: Kluwer Academic Publisher, 1994: 209- 253.
  • 3Di Pillo G, Grippo L. Exact penalty functions in constrained optimization[ J]. SIAM Journal on Control and Optimization, 1989, 27 ( 5 ) : 1333 -1360.
  • 4Di Pillo G, Grippo L. An exact penalty function method with global convergence properties for nonlinear programming problems[J]. Mathematical Programming, 1986, 36( 1 ) : 1-18.
  • 5Di Pillo G, Lucidi S. An augmented lagrangian function with improved exactness properties [J]. SIAM Journal on Optimization, 2002, 12(2):376-406.
  • 6Fletcher R. An exact penalty function for nonlinear programming with inequalities [J]. Math- ematical Programming, 1973, 5( 1 ) : 129-150.
  • 7Fletcher R. Practical Methods of Optimization (2) : Constrained Optimization [ M ]. Wiley: John Wiley & Sons, 1981.
  • 8Han S P, Magasarian O L. Exact penalty functions in nonlinear programming[J]. Mathemati- cal Programming, 1979, 17( 1 ) : 251-269.
  • 9Bazaraa M, Goode J. Sufficient conditions for a globally exact penalty function without con- vexity[J]. Mathematical Programming Studies, 1982, 18( 1 ) : 1-15.
  • 10Bertsekas D P. Necessary and sufficient conditions for a penalty method to be exact [ J]. Mathematical Programming, 1975, 9( 1 ) :87-99.

共引文献8

同被引文献18

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部