期刊文献+

水下排气两相流动及气泡粒径分布的数值模拟 被引量:1

Simulation on the gas-liquid two-phase flow and bubble diameter distribution in an underwater exhaust system
下载PDF
导出
摘要 对某内燃机水下排气管道的排气过程进行了数值模拟,以预测CO_2经过排气管道处理后的气泡直径分布,期为管道的优化设计提供参考。气液两相流动模型采用Euler模型,湍流模型采用Realizable k-ε模型,考虑了气泡的分裂与聚合的粒径分布采用群体平衡方程计算。计算结果表明:在所研究的几何条件与流动参数范围内,CO_2气泡在管道中的非连续流动会因为有浮力作用使其逐渐集中到管道上方从而导致气泡粒径变大,孔板下部开孔对气泡破碎效果有限。管道出口处粒径在4 mm以下的气泡体积分数的时均值为0.466。 Numerical simulation of internal-combustion engine was carried out to predict the diameter distribution of exhaust CO2 bubble after the treatment,in order to help optimizing the exhaust pipe designation. Euler model and Realizable k-ε model were used for simulating gas-liquid two-phase flow and modeling turbulence. Population Balance Equation was adopted to calculate the distribution of bubble diameter considering coalescence and break-up of bubbles. The distribution of the bubble diameter and the effect of multi-orifice on the CO2 bubbles breaking were analyzed. The results showed that,the discontinuous flow of CO2 bubbles in the pipeline would be gradually concentrated to the upper part of the pipe due to the buoyancy effect,which led to the coalescence of bubbles,and made the orifices on the lower part of the plates superfluous. At the outlet of the pipe,the time-averaged volume fraction of all the bubbles whose size was lower than 4 mm was 0.466.
作者 王治云 李永胜 杨茉 WANG Zhi-yun;LI Yong-sheng;YANG Mo(School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai 200093, Chin)
出处 《能源工程》 2017年第6期49-52,共4页 Energy Engineering
基金 国家自然科学基金资助项目(51306121)
关键词 气液两相流 湍流 群体平衡方程 粒径分布 gas-liquid two-phase flow turbulence population balance equation diameter distribution
  • 相关文献

参考文献2

二级参考文献39

  • 1罗和安,HallvardF.Svendsen.鼓泡床反应器中液体循环的模拟[J].化工学报,1995,46(4):458-463. 被引量:3
  • 2Yeoh G H, Tu J Y. Population balance modelling for bubbly flows with heat and mass transfer [ J ]. Chemical Engineering Science, 2004, 59 (15) : 3125.
  • 3Cheung S C P, Yeoh G H, Tu J Y. On the numerical study of isothermal vertical bubbly flow using two population balance approaches [J]. Chemical Engineering Science, 2007, 62: 4659.
  • 4Krepper E, Lucas D, Prasser H M. On the modelling of bubbly flow in vertical pipes [J]. Nuclear Engineering and Design, 2005, 235:597.
  • 5Cheung S C P, Yeoh G H, Tu J Y. On the modeling of population balance in isothermal vertical bubbly flows average bubble number density approach [J]. Chemical Engineering and Processing, 2007, 46:742.
  • 6Liu T J, Bankoff S G. Structure of air-water bubbly flow in a vertical pipe (Ⅱ): Void fraction, bubble velocity and bubble size distribution [J]. Int. J. Heat Mass Trans. , 1993, 36:1061.
  • 7Hibiki T, Ishii M, Xiao Z. Axial interfaeial area transport of vertical bubble flows [J ]. Int. J. Heat Mass Trans., 2001, 44: 1869.
  • 8WangTiefeng(王铁锋),WangJinfu(王金福),YangWeiguo(杨卫国),JinYong(金涌).Experimental study on bubble size distribution in three-phase circulating fluidized beds [ J ]. Journal of Chemical Industry and Engineeing (China)(化工学报),2001,53(3):197-203.
  • 9Wang Tiefeng, Wang Jinfu, Jin Yong. Population balance model for gas-liquid flows: influence of bubble coalescence and breakup models [ J ]. Industrial & Engineering Chemistry Research, 2005, 44 (19) : 7540-7549.
  • 10Shen X, Mishima K, Nakamura H. Two-phase flow distribution in a vertical large diameter pipe [J]. Int. J. Heat Mass Transfer, 2005, 48:211.

共引文献13

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部