期刊文献+

面向复杂时间序列的k近邻分类器 被引量:9

K-Nearest Neighbor Classifier for Complex Time Series
下载PDF
导出
摘要 基于时序对齐的k近邻分类器是时间序列分类的基准算法.在实际应用中,同类复杂时间序列经常展现出不同的全局特性.由于传统时序对齐方法平等对待实例特征并忽略其局部辨别特性,因此难以准确、高效地处理此类具有挑战性的时间序列.为了有效对齐并分类复杂时间序列,提出了一种具有辨别性的局部加权动态时间扭曲方法,用于发现同类复杂时间序列的共同点以及异类序列间的不同点.同时,通过迭代学习时间序列对齐点的正例集与负例集,获取每条复杂时间序列中每个特征的辨别性权重.在多个人工和真实数据集上的实验结果表明了基于局部加权对齐策略的k近邻分类器所具有的可解释性与有效性,并将所提出方法扩展至多变量时间序列分类问题中. Temporal alignment based k-nearest neighbor classifier is a benchmark for time series classification.Since complex time series generally exhibit different global behaviors within classes in real applications,it is difficult for standard alignment,where features are treated equally while local discriminative behaviors are ignored,to handle these challenging time series correctly and efficiently.To facilitate aligning and classifying such complex time series,this paper proposes a discriminative locally weighted dynamic time warping dissimilarity measure that reveals the commonly shared subsequence within classes as well as the most differential subsequence between classes.Meanwhile,time series alignments of positive and negative subsets are employed to learning discriminative weight for each feature of each time series iteratively.Experiments performed on synthetic and real datasets demonstrate that this locally weighted,temporal alignment based k-nearest neighbor classifier is effective in differentiating time series with good interpretability.Extension of the proposed weighting strategy to multivariate time series is also discussed.
作者 原继东 王志海 孙艳歌 张伟 YUAN Ji-Dong;WANG Zhi-Hai;SUN Yan-Ge;ZHANG Wei(School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China;Beijing Key Laboratory of Traffic Data Analysis and Mining (Beijing Jiaotong University), Beijing 100044, China)
出处 《软件学报》 EI CSCD 北大核心 2017年第11期3002-3017,共16页 Journal of Software
基金 国家自然科学基金(61672086,61702030) 中央高校基本科研业务费专项资金(2016RC048,2017YJS036)~~
关键词 复杂时间序列 K近邻 局部加权 动态时间扭曲 complex time series k-nearest neighbor locally weighted dynamic time warping
  • 相关文献

参考文献1

二级参考文献56

  • 1Agrawal R, Faloutsos C, Swami A. Efficient similarity search in sequence databases[C]//Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms (FODO 1993). 1993:69-84.
  • 2Azzouzi M, Nabney I T. Analysing time series structure with Hidden Markov Models[C]//Proceedings of the IEEE Confe- rence on Neural Networks and Signal Processing. 1998:402-408.
  • 3Bagnall A, Janacek G J, Powell M. A likelihood ratio distance measure for the similarity between the fourier transform of time series[C]//Proceedings of the Advances in Knowledge Disco- very and Data Mining, 9th Pacific-Asia Conference (PAKDD2005). 2005:737 743.
  • 4Bagnall A, Davis I., Hills J, et al. Transformation based ensem- bles for time series elassification[C]//Proeeedings of the 2012 SIAM International Conference on Data Mining (SDM 2012). 2012:307 318.
  • 5Balakrishnan S, Madigan D. Decision trees for functional varia- bles[C] // Proceedings of the 2006 International Conference on Data Mining (ICDM 2006). 2006:798 802.
  • 6Batista G, Wang X, Keogh E. A complexity invariant distance measure for time series[C]//Proeeedings of the eleventh SIAM conference on data mining (SDM 2011 ). 2011 : 699-710.
  • 7Berndt D J,Clifford J. Using dynamic time warping to find pat terns in time series[C]//KDD Workshop. 1994 : 359 370.
  • 8Buza K. Fusion methods for time-series classification[D]. Uni- versity of Hildesheim,Germany, 2011.
  • 9Chan K, Fu A W. Efficient time series matching by wavelets [C]// Proceedings of the 15th International Conference on Data Engi- neering (1CDE 1999). 1999;126-133.
  • 10Cheng H, Yan X, Han J, et al. Discriminative frequent pattern analysis for effective classification[C]//Proeeedings of the 23rd International Conference on Data Engineering (ICDE 2007). 2007:716-725.

共引文献51

同被引文献70

引证文献9

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部