期刊文献+

一种加权稠密子图社区发现算法 被引量:9

Community Detection Algorithm Based on Weighted Dense Subgraphs
下载PDF
导出
摘要 目前,针对复杂网络的社区发现算法大多仅根据网络的拓扑结构来确定社区,然而现实复杂网络中的边可能带有表示连接紧密程度或者可信度意义的权重,这些先验信息对社区发现的准确性至关重要.针对该问题,提出了基于加权稠密子图的重叠聚类算法(overlap community detection on weighted networks,简称OCDW).首先,综合考虑网络拓扑结构及真实网络中边权重的影响,给出了一种网络中边的权重定义方法;进而给出种子节点选取方式和权重更新策略;最终得到聚类结果.OCDW算法在无权网络和加权网络都适用.通过与一些经典的社区发现算法在9个真实网络数据集上进行分析比较,结果表明算法OCDW在F度量、准确度、分离度、标准互信息、调整兰德系数、模块性及运行时间等方面均表现出较好的性能. Most community detection algorithms in complex networks find communities based on topological structure of the network.Some important information is included in real network data,which represents data reliability or link closeness.Combined these prior information to detect communities might obtain better clustering results.An overlapping community detection on weighted networks (OCDW) is proposed in this study.Edge weight is defined by combining network topological structure and real information.Then,vertex weight is induced by edge weight.To obtain cluster,OCDW selects seed nodes according to vertex weight.After finding a cluster,edges in this cluster reduce their weights to avoid being selected as a seed node with high probability.Compared with some classical algorithms on 9 real networks including 5 unweighted networks and 4 weighted networks,OCDW shows a considerable or better performance on F-measure,accuracy,separation,NMI,ARI,modularity and time efficiency.
作者 杨贵 郑文萍 王文剑 张浩杰 YANG Gui;ZHENG Wen-Ping;WANG Wen-Jian;ZHANG Hao-Jie(School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China;Key Laboratory of Computation Intelligence and Chinese Information Processing (Shanxi University), Ministry of Education, Taiyuan 030006, China)
出处 《软件学报》 EI CSCD 北大核心 2017年第11期3103-3114,共12页 Journal of Software
基金 国家自然科学基金(61673249,61572005) 山西省回国留学人员科研基金(2016-004,2017-014)~~
关键词 复杂网络 社区发现 图聚类 重叠聚类 稠密子图 complex network community detection graph clustering overlapping clustering dense subgraph
  • 相关文献

参考文献3

二级参考文献47

  • 1Huang Chien-Hung, Chou Szu-Yu, Ng Ka-Lok. Robustness of protein complex networks [C] //Proc of the 2nd Int Conf on Computer Science and Service System (CSSS). Los Alamitos, CA: IEEE Computer Society, 2012: 841-844.
  • 2Zhao Bihai, Wang Jianxin, Li Min, et al. Detecting protein compleses based on uncertain graph model [J]. IEEE/ACM Trans on Computational Biology and Bioinformatics, 2014, 11 (3): 486-497.
  • 3Schaeffer S E. Graph clustering [J]. Computer Science Review, 2007, 1(1): 27-64.
  • 4Dongen S. Graph clustering by flow simulation [D]. Utrecht, Netherlands: University of Utrecht, 2000.
  • 5Shih Y K, Parthasarathy S. Identifying functional modules in interaction networks through overlapping Markov clustering [J]. Bioinformaties, 2012, 28(18): 473-479.
  • 6Bader G D, Hogoe C W. An automated method for finding molecular complexes in large protein interaction networks [J]. BMCBioinformatics, 2003, 4(1): 2.
  • 7Palla G, Der6nyi I, Farkas I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043): 814-818.
  • 8King A D, Przulj N, Jurisica I. Protein complex prediction via cost based clustering [J]. Bioinformatics, 2004, 20(17) 3013-3020.
  • 9Qin Guimin, Gao Lin. Spectral clustering for detecting protein complexes in protein-protein interaction ( PPI ) networks [J]. Mathematical and Computer Modelling, 2010, 52(11/12) : 2066-2074.
  • 10Lee A J, Lin M C, Hsu C M. Mining dense overlapping subgraphs in weighted protein-protein interaction networks [J]. BioSystems, 2011, 103(3): 392-399.

共引文献53

同被引文献51

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部