摘要
针对火箭上面级飞行阶段存在的慢旋特性和大推力问题,提出了一种实时自适应抗差估计算法。针对前者,将抗差理论与CKF滤波算法相结合,以提高系统的抗差性;针对后者,采用嵌入机动决策的多模态轨道确定算法,在机动时刻调整状态方差矩阵,以加快观测信息对系统状态的修正作用,减小系统状态变量估计误差。通过对某次火箭上面级的实测数据分析,表明该算法能够有效抑制测量数据质量差的问题,提高系统的跟踪性能,并对外测弹道重建具有一定的应用价值。
A real-time adaptive robust estimation algorithm is proposed to solve the problem of slow spin and large thrust in the rocket upper stage. In order to improve the robustness of the system,a multi-modal orbit determination algorithm based on embedded maneuvering decision is used to adjust the state variance matrix in maneuvering. In this paper,we can use the algorithm of combining the robustness theory with CKF filtering algorithm to improve the robustness of the system. Speed up the correction of the state of the observed information on the system,and reduce the system state variable estimation error. Through the analysis of the measured data of a rocket at the top level,it shows that the algorithm can effectively suppress the poor quality of measurement data and improve the tracking performance of the system. It is of certain valuable in application to the trajectory reconstruction.
作者
黄普
张定波
HUANG Pu;ZHANG Ding-bo(State Key Laboratory of Astronautic Dynamics, Xi'an Satellite Control Center, Xi' an 710043, China)
出处
《飞行力学》
CSCD
北大核心
2017年第6期53-56,共4页
Flight Dynamics
基金
国家自然科学基金资助(61302098)
关键词
上面级
自适应
抗差理论
多模态
upper stage
adaptive
robustness theory
multi-modal