摘要
针对自平衡车姿态角度测量问题,本文叙述了基于卡尔曼滤波和互补滤波的自平衡车MEMS IMU单轴融合算法的原理,分析了平衡车车身翻滚运动对融合算法计算结果的影响,最后分析了卡尔曼滤波法和互补滤波法的动态和静态收敛速度。为了验证各算法的效果,本文搭建了基于飞思卡尔K60单片机的信号采集平台进行实验。实验表明在采用低成本MEMS IMU的自平衡车俯仰角计算中,两种融合算法的效果接近,但是互补滤波法在静态时的收敛速度较快,同时考虑计算时效性,采用基于互补滤波的单轴融合算法较为合适。
The principle of algorithms based on Kalman filtering and complementary filtering are presented to measure the attitude angle of a self-balance car.The impact of rolling motion of car is evaluated.The speed of convergence of Kalman filtering and complementary filtering is analyzed.A K60 microcontroller based experimental platform is developed to validate the efficiency of algorithms.Result of experiment shows that the performance of the two signal-fusion algorithms are approaching.But after considering the computational efficiency,we can conclude that the complementary filtering based algorithm is more suitable.
作者
吴学勤
许耀华
李娟娟
王建锋
刘新雨
WU Xue-qin;XU Yao-hua;LI Juan-juan;WANG Jian-feng;LIU Xin-yu(School of Automobile,Chang'an University,Xi'an,Shaanxi 710064;Road Traffic Intelligence Detection and Engineering Technology Research Center of Shaanxi (Chang ' an University), Xi' an, Shaanxi 710064, China)
出处
《计算技术与自动化》
2017年第4期37-41,共5页
Computing Technology and Automation
基金
陕西省自然科学基金资助项目(2016JM5095)
关键词
自平衡车
信号融合
卡尔曼滤波
互补滤波
姿态角
balance-car
signal fusion
Kalman filter
complementary filter
attitude angle