期刊文献+

结合Kalman滤波器的SIFT目标跟踪算法 被引量:2

SIFT Tracking Algorithm Combined with Kalman Filter
下载PDF
导出
摘要 针对目标图像跟踪过程中提取待匹配图像较大的特征向量时,很难满足准确性和快速性要求,提出了结合卡尔曼滤波的SIFT目标跟踪算法。算法利用Kalman滤波器对动态目标在下一帧图像中可能出现的位置,在自适应窗口中识别动态目标。实验证明,该算法可以缩短了待匹配图像的SIFT特征点提取时间,提高了目标跟踪的效率。 Target image extraction and matching image tracking larger feature vectors,It is difficult to meet the requirement of accuracy and rapidity, when extracting the eigenvectors to be matched during the target image tracking.A SIFT target tracking algorithm based on Kalman filter is proposed.The algorithm makes use of the Kalman filter to identify the dynamic target in the next frame image,which can be used to identify the dynamic object in the adaptive window.Experiments show that the proposed algorithm can shorten the time of SIFT feature points extraction and improve the efficiency of target tracking.
作者 任静 REN Jing(Colleage of Computer Science, Xi'an Aeronautical University, Xi' an, Shaanxi 710077, China)
出处 《计算技术与自动化》 2017年第4期80-83,共4页 Computing Technology and Automation
基金 陕西省教育厅专项科研计划项目(15JK1379)
关键词 尺度不变特征变换算法 卡尔曼滤波 目标识别 特征点提取 scale invariant feature transform(SIFT) Kalman filter object recognition feature point extraction
  • 相关文献

参考文献4

二级参考文献49

  • 1周颜军.数据结构[M].长春:吉林科学技术出版社,2003.
  • 2STAUFFER C, GRIMSON W. Learning patterns of acitivty using real-time tracking[J]. IEEE Trans on PAMI, 2000,22(8): 747-757.
  • 3TAO H,SAWHNEY H, KUMAR R. Object tracking with bayesian estimation of dynamic layer representations[J]. IEEE Trans on PAMI, 2002,24 (1) : 75-89.
  • 4COLLINS R, FUJIYOSHI A, KANADE T. Algorithms for cooperative multisensor surveillance[C]// Proceedings of the IEEE. (Supp. 1) : IEEE, 2001,89 (10):1456-1477.
  • 5KANADE T, COLLINS R, LIPTON A, et al. Advances in cooperative multi-sensor video surveillance [C]// Proceedings of DARPA Image Understanding Workshop. Monterey: (Supp. 1), 1998,1:3-24.
  • 6CHANG T S, GONG S G. Tracking multiple people with a multi-camera system[C]//Proceedings of IEEE Workshop on Multi-Object Tracking. Washington.. IEEE, 2001: 19.
  • 7UTSUMI A, OHYA J. Multiple-camera-based human tracking using non-synchronous observations [C]// Proceedings of 4th ACCV. Taipei: IEEE, 2000: 1034- 1039.
  • 8KELLY P, KATKERE A, KURAMURA D, et al. An architecture for multiple perspective interactive video [C]// Proceedings of the third ACM international conference on Multimedia. New York: ACM, 1995: 201-212.
  • 9BLACK J, ELLIS T. Multiple camera image tracking [C]// Proceedings of CVPR Kauai:IEEE, 2001.
  • 10JAVED O, RASHEED Z, ALATAS O, et al. Knight^m: a real-time surveillance system for multiple overlapping and on-overlapping cameras[C]//Proceedings of the IEEE International conference on multimedia and expo. 2003.

共引文献99

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部