摘要
Molecular dynamics simulations are employed to investigate the effect of thermal convection induced only by dissipative lateral walls on density segregation of the strongly driven binary granular gases under low gravity conditions. It is found that the thermal convection due to dissipative lateral walls has significant influence on the segregation intensity of the system. The dominant factor in determining the degree of segregation achieved by the system is found to be the relative convection rate between differing species. Moreover, a qualitative explanation is proposed for the relationship between the thermal convection due to dissipative lateral walls and the observed segregation intensity profiles.
Molecular dynamics simulations are employed to investigate the effect of thermal convection induced only by dissipative lateral walls on density segregation of the strongly driven binary granular gases under low gravity conditions. It is found that the thermal convection due to dissipative lateral walls has significant influence on the segregation intensity of the system. The dominant factor in determining the degree of segregation achieved by the system is found to be the relative convection rate between differing species. Moreover, a qualitative explanation is proposed for the relationship between the thermal convection due to dissipative lateral walls and the observed segregation intensity profiles.
基金
Supported by the National Natural Science Foundation of China under Grant No 11404104
the Natural Science Foundation of Hubei Province of China under Grant No 2014CFC1127