期刊文献+

Anisotropic Magnetoresistivity in Semimetal TaSb_2

Anisotropic Magnetoresistivity in Semimetal TaSb_2
下载PDF
导出
摘要 We investigate the anisotropic magnetic transports in topological semimetal TaSb2. The compound shows the large magnetoresistance(MR) without saturation and the metal-insulator-like transition no matter whether the magnetic field is parallel to c-axis or a-axis, except that the MR for B‖c is almost twice as large as that of B‖a at low temperatures. The adopted Kohler's rule can be obeyed by the MR at distinct temperatures for B‖c,but it is slightly violated as B‖a. The angle-dependent MR measurements exhibit the two-fold rotational symmetry below70 K,consistent with the monoclinic crystal structure of TaSb2. The dumbbell-like picture of angle-dependent MR in TaSb2 suggests a strongly anisotropic Fermi surface at low temperatures. However, it finally loses the two-fold symmetry over 70 K, implying a possible topological phase transition at around the temperature where Tm is related to a metal-insulator-like transition under magnetic fields. We investigate the anisotropic magnetic transports in topological semimetal TaSb2. The compound shows the large magnetoresistance(MR) without saturation and the metal-insulator-like transition no matter whether the magnetic field is parallel to c-axis or a-axis, except that the MR for B‖c is almost twice as large as that of B‖a at low temperatures. The adopted Kohler's rule can be obeyed by the MR at distinct temperatures for B‖c,but it is slightly violated as B‖a. The angle-dependent MR measurements exhibit the two-fold rotational symmetry below70 K,consistent with the monoclinic crystal structure of TaSb2. The dumbbell-like picture of angle-dependent MR in TaSb2 suggests a strongly anisotropic Fermi surface at low temperatures. However, it finally loses the two-fold symmetry over 70 K, implying a possible topological phase transition at around the temperature where Tm is related to a metal-insulator-like transition under magnetic fields.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第12期70-74,共5页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 61401136,11604299 and 61376094 the Zhejiang Natural Science Foundation of China under Grant No LY18F010019 the Open Program from Wuhan National High Magnetic Field Center under Grant No 2016KF03 the General Program of Natural Science Foundation of Jiangsu Province under Grant No BK20171440
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部