期刊文献+

耦合共振式无线充电系统建模及其电磁兼容仿真分析 被引量:3

Modeling of the Coupled Resonant Wireless Charging System and Analysis of its Electromagnetic Compatibility
下载PDF
导出
摘要 无线电能传输技术受到了越来越广泛的关注,该技术实现了电动汽车的无线充电。与能量在自由空间传播相比,电动汽车无线充电时的电磁环境有很大不同,而电磁安全问题也变得日益突出。在对共振耦合式无线电能传输技术研究中,建立了共振式无线传输模型,并对不同频率下特性进行Matlab仿真分析,根据二维和三维曲线和实际的调试情况确定合适的线圈参数,同时为了更好地设计样机的各项参数,我们运用ANSYS仿真软件,结合有限元理论和共振器模型,搭建无线传输系统的仿真模型,获取电磁共振式无线电力传输系统工作时周围环境中的电磁场分布,并以1 MHz参数为例,确定仿真模型参数,从而为电磁兼容安全方面的研究提供了基础数据。 Recently,the wireless power transmission technology has attracted more and more extensive attention,which could be adopted in electric vehicles to realize the wireless charging. However,the electromagnetic safety problem in wireless charging is also of great concern considering the complicated electromagnetic environment when electric vehicles are charging wirelessly. In this paper,the resonant coupled wireless power transmission technology is studied. A resonant wireless transmission model is established. The characteristics of the model under different frequencies are simulated and analyzed by Matlab. According to the two-dimensional and three-dimensional curves and the actual testing situation,the appropriate coil parameters are determined. In addition,a simulation model of the wireless transmission system which combines the finite element method and the resonator model is developed in ANSYS software to obtain the electromagnetic field distribution in the surrounding environment when the electromagnetic resonant transmission system is working. As an example,the 1 MHz parameters of the simulation model are determined. The results could be useful basic data for the future study on the electromagnetic compatibility safety.
出处 《水电与新能源》 2017年第12期35-39,共5页 Hydropower and New Energy
基金 国家科技支撑计划资助项目(2015BAG07B00)
关键词 共振耦合 无线充电 建模 仿真 resonant coupling wireless charging modeling simulation
  • 相关文献

参考文献2

二级参考文献29

  • 1Kim C G, Seo D H, You J S, et al. Design of a contactless battery charger for cellular phone[J]. IEEE Transactions on Industrial Electronics, 2001, 48(6): 1238-1247.
  • 2Choi B, Nho J, Cha H, Ahn T, et al. Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device[J]. IEEE Transactions on Industrial Electronics, 2004, 51(1): 140-147.
  • 3Pedder D A G, Brown A D, Skinner J A. A contactless electrical energy transmission system[J]. IEEE Transactions on Industrial Electronics, 1999, 46(1): 23-30.
  • 4Ghahary A, Cho B H. Design of a transcutaneous energy transmission system using a series resonant converter[J]. IEEE Transactions on Power Electronics, 1992, 7(2): 261-269.
  • 5Jang Y, Jovanovic M M. A contactless electrical energy transmission system for portable-telephone battery chargers[J]. IEEE Transactions on Industrial Electronics, 2003, 50(3): 520-527.
  • 6Joung G B, Cho B H. An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer[J]. IEEE Transactions on Power Electronics, 1998, 13(6): 1013-1022.
  • 7Sakamoto H, Harada K. A novel circuit for noncontact charging through electro-magnetic coupling [C]. In Proceedings of IEEE PESC 1992, Fukuoka, Japan, 1992: 168-174.
  • 8Abe H, Sakamoto H, Harada K. A noncontact charger using resonant converter with parallel capacitor of the secondary coil[J]. IEEE Transactions on Industrial Applications, 1998, 36(2): 444-451.
  • 9Wang C S, Covic G A, Stielar O H. Investigatng an LCL load resonant inverter for inductive power transfer applications[J]. IEEE Transactions on Power Electronics, 2004, 19(4): 995-1002.
  • 10Laouamer R, Brunello M, Ferrieux J P, et al. A multi-resonant converter for non-contact charging with electromagnetic coupling[C]. In Proceedings of IEEE IECON 1997, New Orleans, Louisiana,USA, 1997. 792-797.

共引文献186

同被引文献17

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部