摘要
无线电能传输技术受到了越来越广泛的关注,该技术实现了电动汽车的无线充电。与能量在自由空间传播相比,电动汽车无线充电时的电磁环境有很大不同,而电磁安全问题也变得日益突出。在对共振耦合式无线电能传输技术研究中,建立了共振式无线传输模型,并对不同频率下特性进行Matlab仿真分析,根据二维和三维曲线和实际的调试情况确定合适的线圈参数,同时为了更好地设计样机的各项参数,我们运用ANSYS仿真软件,结合有限元理论和共振器模型,搭建无线传输系统的仿真模型,获取电磁共振式无线电力传输系统工作时周围环境中的电磁场分布,并以1 MHz参数为例,确定仿真模型参数,从而为电磁兼容安全方面的研究提供了基础数据。
Recently,the wireless power transmission technology has attracted more and more extensive attention,which could be adopted in electric vehicles to realize the wireless charging. However,the electromagnetic safety problem in wireless charging is also of great concern considering the complicated electromagnetic environment when electric vehicles are charging wirelessly. In this paper,the resonant coupled wireless power transmission technology is studied. A resonant wireless transmission model is established. The characteristics of the model under different frequencies are simulated and analyzed by Matlab. According to the two-dimensional and three-dimensional curves and the actual testing situation,the appropriate coil parameters are determined. In addition,a simulation model of the wireless transmission system which combines the finite element method and the resonator model is developed in ANSYS software to obtain the electromagnetic field distribution in the surrounding environment when the electromagnetic resonant transmission system is working. As an example,the 1 MHz parameters of the simulation model are determined. The results could be useful basic data for the future study on the electromagnetic compatibility safety.
出处
《水电与新能源》
2017年第12期35-39,共5页
Hydropower and New Energy
基金
国家科技支撑计划资助项目(2015BAG07B00)
关键词
共振耦合
无线充电
建模
仿真
resonant coupling
wireless charging
modeling
simulation