期刊文献+

基于pair-copula情景生成和广义熵约束的CVaR投资组合模型研究 被引量:1

Analysis of Portfolio CVaR Based on Pair-Copula Scenario Generation and the Constraint of Generalized Entropy
原文传递
导出
摘要 通过GARCH模型对收益率序列的边缘分布建模,结合copula构建收益率的联合分布函数,并由蒙特卡洛模拟生成收益率的情景,得到的结果代入广义熵约束的CVaR模型中,由此得到最优的投资权重.实证表明,在考虑不同资产之间的相依结构基础上得到的最优化结果相比传统的M-V模型具有明显的优势,在分散化和收益性上的到很好的效果. At first this paper presents a method to find the optimal portfolio weights, which uses GARCH model and copula method to construct the marginal distribution and joint distribution of the rate of return. Then Monte Carlo simulation technique is used to generate scenario of the rate of return, which is regarded as the input variable in the model of CVaR with constraint of generalized entropy. The empirical result indicates that the optimal portfolio weights we get perform better than the M-V model in diversification and profitability in consideration of dependency structure between the assets in the portfolio.
作者 游翔宇 程希骏 马利军 YOU Xiang-yu;CHENG Xi-jun;MA Li-jun(Department of Statistics and Finance, University of Science and Technology of China, Hefei 230026, Chin)
出处 《数学的实践与认识》 北大核心 2017年第21期24-31,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11371340)
关键词 COPULA GARCH CVAR 投资组合 copula GARCH entropy CVaR portfolio
  • 相关文献

参考文献2

二级参考文献16

  • 1吴振翔,陈敏,叶五一,缪柏其.基于Copula-GARCH的投资组合风险分析[J].系统工程理论与实践,2006,26(3):45-52. 被引量:85
  • 2Bedford T, Cooke R M. Probability density decomposition for conditionally dependent random vari- ables modeled by vines [J]. Annals of Mathematics and Artificial Intelligence, 2001, 32: 245-268.
  • 3Sklar A. Fonctions d'e repartition 'an dimensions et leurs marges [J]. Publ. Inst. Stat. Univ. Paris 8, 1959: 229-231.
  • 4Aask, Czado C, Frigessi A, et al. Pair-copula constructions of multiple dependence [J]. Insurance: Mathematics and Economics, 2009, 44(2): 182-198.
  • 5Joe H. Families of m-variate distributions with given margins and m(m - 1)/2 bivariate depen- dence parameters. In Rfischendorf L, Schweizer B, and Taylor M D (Ed.), Distributions with Fixed Marginals and Related Topics [C]. America: Institute of Mathematical Statistics, 1996: 120-141.
  • 6Patton A J. Skewness, Asymmetric Dependence, and Portfolios [R]. London School of Economics & Political Science, 2002.
  • 7Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk [ J]. Journal of Risk, 2000, 2 (3) : 21-41.
  • 8Elahi Y, Abd Aziz M 1. Mean-variance-CVaR model of muhiportfolio optimization via linear weighted sum method [ J]. Mathematical Problem in Engineering, 2014 : 1-7.
  • 9Meng Z Q, Jiang M, Hu Q Y. Dynamic CVaR with multi- period risk problems [ J]. Journal of System & Complexity, 2011, 24(5): 907-918.
  • 10Rockafellar R T, Uryasev S. Conditional value-at-risk for general loss distributions [ J ]. Journal of Banking and Finance, 2002, 26(7) : 1 443-1 471.

共引文献12

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部