摘要
针对多目标非劣解集非凸时均衡解不唯一的问题,本文将均变率法和逼近理想点法耦合,形成一种新的多目标决策方法—理想均变率法,同时对该方法的最佳均衡解的存在性及唯一性进行了严格的理论证明。以雅砻江流域锦官电源组的多目标调度决策为例,分别对均变率法、逼近理想点法和理想均变率法进行了分析比较。结果表明理想均变率法不仅能得到满足多目标调度需求的最满意方案,而且可以定性、定量地描述防洪、发电与生态三目标间的相互转换关系。该方法理论证明完备,且兼顾冒险型和保守型的决策方式,在实际工作中更易被决策者接受,为多目标决策提供了一种新的有效的方法。
The equilibrium solution of a non-inferior solution set for a multi-objective decision-making model is not unique when the set is non-convex. To solve this problem, this study develops an ideal mean rate method(IMRM) combining a technique of order preference by similarity to an ideal solution(TOPSIS), and the mean rate method(MRM). The existence and uniqueness of the optimal equilibrium solution of IMRM are proved. We analyze and compare the solutions of MRM, TOPSIS and IMRM to the multi-objective scheduling decision problem in the Jinguan power group at the Yalong River. Results show that IMRM can not only achieve the best solution that satisfies the multi-objective scheduling, but offer a qualitative and quantitative description of the relationship among the objectives of flood control, power generation, and ecological protection. The theory of IMRM is proved to be complete, and it is more likely to be accepted by decision makers.
出处
《水力发电学报》
EI
CSCD
北大核心
2017年第12期1-9,共9页
Journal of Hydroelectric Engineering
基金
"十三五"国家重点研发计划课题(2016YFC0402208
2016YFC0402308)
国家自然科学基金(51279062)
关键词
水库调度
多目标决策
均变率
理想均变率
最佳均衡解
reservoir operation
multi-objective decision making
mean rate
ideal mean rate
optimal equilibrium solution