期刊文献+

Er_2O_3薄膜型热辐射体的制备与性能研究 被引量:1

Preparation and performance study of Er_2O_3 film selective thermal emitter
下载PDF
导出
摘要 调制辐射体的可见和近红外区域的辐射光谱与光伏电池吸收光谱的匹配是开发高性能热光伏电池技术的关键.采用电子束蒸发在单晶硅衬底上制备金属Er薄膜并进行后氧化处理制备Er_2O_3薄膜型辐射体.X射线衍射结果表明薄膜结晶良好,且Si基底对Er_2O_3薄膜的晶体结构没有显著影响.X射线光电子能谱拟合结果表明薄膜中Er元素和O元素符合Er_2O_3的化学计量比.高温近红外光谱测试结果表明,样品在1550 nm左右出现了明显的Er^(3+)离子的特征辐射峰,这与GaSb光电池的吸收光谱相匹配. Solar thermophotovoltaic(STPV) generator is a popular energy converter due to providing low noise, low thermal mechanical stress and portability. It has the ability to exceed the efficiency of pure solar photovoltaic system. An idealized STPV generator is a reversible heat-engine, offering a theoretical efficiency of over 80%, but the actual conversion efficiency of STPV generator is still low due to the mistuned spectral property between the thermal selective emitter and the TPV cell. One key issue in developing the STPV generator with high performance is the spectral matching between the thermal radiation spectrum of radiator and the spectral response of photovoltaic cell in visible and near-infrared region, which usually lies between the visible and the near-infrared region. High-temperature spectral emissivity of rare earth oxide is of special interest, because the radiation has a narrow band of wavelengths in the near infrared and infrared region from 900 to 3000 nm. In this work, the thermal-selective film Er2O3 emitter is fabricated by post-oxidation of Er film deposited on Si substrate through using electron-beam gun evaporation. Based on the X-ray diffraction results,the Er2O3 film is of cubic phase structure and well-crystallized when the oxidation temperature is 700℃, and the Si substrate has no obvious influence on the crystal structure of Er2O3 film. According to the X-ray photoelectron spectroscopy results of the Er2O3 film after thermal oxidation at 700℃, the atomic ratio of Er/O is stoichiometric. In order to obtain the selective emission characteristic of the Er2O3 film, a measurement system is designed. The system consists of two major portions, i.e., one is a near infrared spectrometer purchased from Ocean Optics, the other is a high-temperature emission characteristic tester which can provide oxyhydrogen flame to heat the sample by using an electronic impulse ignition to torch the hydrogen-oxygen mixture. The oxyhydrogen flame passes through the nozzle and sprays vertically on the surface of the thermal-selective emitter sample. The facula of the oxyhydrogen flame convergence is very small(facula diameter: ~0.8 cm), and the highest temperature achieved is about 2500℃. The measurement condition of selective emission performance of the Er2O3 film emitter coincides with the application characteristic of STPV generator. The emission performance result of the film emitter at 700℃ shows a typical gray-body emission characteristic. The measurements carried out at 900 and 1100℃ show that the Er2O3 film has a distinct emittance spectrum at 1550 nm corresponding to Er^(3+), and the intensity of the selective emission peak strengthens with the measuring temperature or film thickness increasing. The thermal-selective film Er2O3 emitter is found to have emission spectrum suitable for efficient matching with the infrared response of GaSb photovoltaic cell.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2017年第24期261-266,共6页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61405118 61504082) 浙江省自然科学基金(批准号:LY15A040001 LQ16F040001) 山西省自然科学基金(批准号:201601D021051) 绍兴市科技计划项目(批准号:2015B70009)资助的课题~~
关键词 Er2O3 薄膜型辐射体 高温近红外光谱 太阳能热光伏 Er2O3, film thermal selective emitter, high-temperature near-infrared spectrum, solarthermophotovoltaic
  • 相关文献

参考文献1

二级参考文献49

  • 1Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050.
  • 2Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J 2014 Energy Environ. Sci. 7 982.
  • 3Noh J H, Im S H, Heo J H, Mandal T N, Seok S 2013 Nano Lett. 13 1764.
  • 4Carmona C R, Malinkiewicz O, Soriano A, Espallargas G M, Garcia A, Reinecke P, Kroyer T, Dar M I, Nazeeruddine M K,Bolink H J 2014 Energy Environ. Sci. 7 994.
  • 5Eperon G E, Burlakov V M, Goriely A, Snaith H J 2013 ACS Nano 8 591.
  • 6Snaith H J 2013 J. Phys. Chem. Lett. 4 3623.
  • 7Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903.
  • 8Kim J, Lee S H, Lee J H, Hong K H. 2014 J. Phys. Chem. Lett 5 1312.
  • 9Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088.
  • 10Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Baker R H, Yum J H, Moser J E, Gr?tzel M, Park N G 2012 Sci.Rep. 2 591.

共引文献46

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部