期刊文献+

增量极坐标编码的贝赛尔曲线智能优化算法

Intelligent optimized Bezier curves based on incremental polar coordinate coding
下载PDF
导出
摘要 针对基于统计的隶属度函数确定方法进行了改进,使用贝塞尔曲线作为隶属度函数的上升或下降沿,使隶属度函数可以经过统计结果规定的任意中间点。使用新的增量极坐标编码对贝塞尔曲线控制点进行表达,解决了传统贝塞尔曲线优化中的控制点约束问题。采用差分进化算法对贝塞尔曲线控制点进行优化,可智能拟合经过任意点的最佳贝塞尔曲线。算法可扩展到任意阶贝塞尔曲线,所得隶属度函数较非贝塞尔曲线方法更为合理。 This study improves the method of determining the statistic-based membership function for membership function selection in fuzzy classification. Bezier curves are used as the ascendant or descendant edge of the membership function, to ensure that the membership function goes through any arbitrary points stipulated in statistical results. The control points of the Bezier curves are expressed by incremental polar coordinate coding, which solves the control point constraint problem in optimization of traditional Bezier curves. In addition, the differential evolution algorithm is used to optimize the control points of Bezier curves, and this can intelligently fit the best Bezier curve that goes through any arbitrary point. Results show that the proposed algorithm can be extended to any order Bezier curve, and the obtained membership functions are more reasonable than those of the non-Bezier curve method.
出处 《智能系统学报》 CSCD 北大核心 2017年第6期841-847,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(71371142 61503287) 镇江市软科学基金项目(2225031701)
关键词 隶属度函数 贝塞尔曲线 差分进化算法 曲线拟合 优化算法 模糊分类 模糊统计 进化计算 membership function bezier curves differential evolution curve fitting optimization algorithm fuzzy classification fuzzy statistics evolutionary algorithms
  • 相关文献

参考文献10

二级参考文献77

  • 1张剑,李从东.基于控制图的模糊资料判别研究[J].工业工程,2006,9(1):104-106. 被引量:3
  • 2Zadeh L.A.模糊集合、语言变量及模糊逻辑[M].北京:科学出版社,1982..
  • 3Wang C H, Wang W Y, Lee T T, et al. Fuzzy B-spline membership function (BMF) and its applications in fuzzy-neural control[J].IEEE Trans on Systems, Man and Cybernetics, 1995, 25(5) : 841-851.
  • 4Cano J C, Nava P A. A fuzzy method for automatic generation of membership function using fuzzy relations from training examples[C]. IEEE Proc. New Orleans, 2002:158-162.
  • 5Yang C C, Bose N K. Generating fuzzy membership function with self-organizing feature map [J]. Pattern Recognition Letters, 2006, 27(5): 356-365.
  • 6Dombi J, Gera Z. The approximation of piecewise linear membership functions and Lukasiewicz operators [J]. Fuzzy Sets and Systems, 2005, 154(2): 275-286.
  • 7Chang P T, Huang L C. Lin H J. The fuzzy Delphi method via fuzzy statistics and membership function fitting and an application to the human resources[J].Fuzzy Sets and Systems, 2000, 112(3): 511-520.
  • 8MedagliaA L, Fang S C, Nuttle H L W, et al. An efficient and flexible mechanism for constructing membership functions [Jl. European J of Operational Research, 2002, 139(1): 84-95.
  • 9Campos I, Islas M, Ramirez G, et al. Growth kinetics of borided layers: Artificial neural network and least square approaches[J]. Applied Surface Science, 2007, 253(14) : 6226-6231.
  • 10Wang C H, Wang W Y, Lee T T. Fuzzy B-spline membership function(BMF) and its application in fuzzy-neural control[ J]. IEEE Trans on Systems, Man and Cybernetics, 1995, 25 (5) : 841-851.

共引文献264

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部