期刊文献+

七阶正交容积卡尔曼滤波算法 被引量:6

A seventh-degree cubature quadrature Kalman filter
原文传递
导出
摘要 在高斯滤波框架下,阶次越高,近似精度越高。为提高滤波精度,通过提高阶次,提出了七阶正交容积卡尔曼滤波(CQKF)算法。在传统CQKF算法的基础上,该算法扩展了线性积分的近似阶次,提出了七阶球面积分的确定性采样方法;进而扩展了球-半径准则,提高了滤波估计精度。飞行器目标跟踪的仿真实验证明了该算法的有效性,证明了七阶CQKF比五阶CQKF、三阶容积卡尔曼滤波器(CKF)和无迹卡尔曼滤波器(UKF)有更高的滤波精度。 In the Gaussian filter frame,the higher the order,the higher the accuracy of the approximation.To improve the filtering accuracy,a seventh-degree Cubature Quadrature Kalman Filter(CQKF)algorithm is proposed by improving the degree.Based on the traditional CQKF,the algorithm extends the approximate degree of linear integrals,and proposes a deterministic sampling method for the seven-degree spherical integral.Then the spherical-radial rule is extended to improve the accuracy of the filter.The simulation results of the aircraft target tracking demonstrate the effectiveness of the algorithm.It is proved that the seventh-degree CQKF is more accurate than the fifth-CQKF,third-degree Cubature Kalman Filter(CKF)and Unscented Kalman Filter(UKF).
出处 《航空学报》 EI CAS CSCD 北大核心 2017年第12期280-290,共11页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61153002 61473039)~~
关键词 高阶正交滤波器 CKF 飞行器目标跟踪 七阶CQKF UKF high-degree orthogonal filter CKF aircraft target tracking seventh-degree CQKF UKF
  • 相关文献

参考文献1

二级参考文献24

  • 1WANG S Y, FENG J C, TSE C K. Analysis of the characteristic of the Kalman gain for 1-D chaotic maps in cubature Kalman filter [J]. IEEE Signal Processing Letters, 2013, 20(3): 229—232.
  • 2SON H S, PARK J B, JOO Y H. Fuzzy c-means clustering-based smart tracking model for three-dimensional manoeuvring target including unknown acceleration input [J]. IET Radar, Sonar and Navigation, 2013, 7(6): 623-634.
  • 3ITO K, XIONG K Q. Gaussian filters for nonlinear filtering problems [J]. IEEE Transactions on Automatic Control, 2000, 45(5): 910-927.
  • 4JAUFFRET C, PILLON D, PIGNOL A C. Bearings-only maneuvering target motion analysis from a nonmaneuvering platform [J]. IEEE Transactions on Aerospace Electronic Systems, 2010, 46(4): 1934-1949.
  • 5YANG T, MEHTA P G, MEYN S P. Feedback particle filter [J]. IEEE Transactions on Automatic Control, 2013, 58(10): 2465-2480.
  • 6DOUCET A, GADSILL S, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing, 2000, 50(2): 736-746.
  • 7ZUO J Y. Dynamic resampling for alleviating sample impoverishment of particle filter [J]. IET Radar, Sonar & Navigation, 2013,7(9): 968-977.
  • 8MACAGNANO D, de ABREU G T F. Adaptive gating for multitarget tracking with Gaussian mixture filters [J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1533-1538.
  • 9BILIK I, TABRIKIAN J. Maneuvering target tracking in the presence of glint using the nonlinear Gaussian mixture Kalman filter [J]. IEEE Transactions on Aerospace Electronic Systems, 2010, 46(1): 240-262.
  • 10CLARK J M C, KOUNTOURIOT1S P A, VINTER R B. A Gaussian mixture filter for range-only tracking [J]. IEEE Transactions on Automatic Control, 2011, 56(3): 602-613.

共引文献8

同被引文献40

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部