期刊文献+

基于光谱角匹配加权的高光谱图像异常检测 被引量:2

Anomaly detection for hyperspectral image based on weighted spectral angle match
下载PDF
导出
摘要 针对高光谱背景中存在异常和噪声的问题,提出了一种基于光谱角匹配(SAM)加权的核RX异常检测算法。首先对图像背景像元进行K-均值聚类,得到不同类背景对应的聚类中心,然后计算背景像元与聚类中心的光谱角余弦,选出较纯净的背景作为新背景,最后新背景中的每个像元将自己的光谱角信息作为权值,构造加权核RX异常检测算子,通过加权削弱了残留其中的异常和噪声的干扰。为验证算法的有效性,利用真实的AVIRIS和ROSIS-03遥感器采集高光谱数据进行了仿真实验,结果表明与对比算法相比,所提算法对潜在的异常具有较强的抑制能力,提高了检测精度。 In order to overcome the problem that hyperspectral image background samples contain anomalous pixels and noise, a kernel RX anomaly detection algorithm based on weighted spectral angle match (SAM) was proposed. Firstly, k-means clustering was performed on the background pixels of the image to obtain the cluster centers, then the spectral angle cosine of the background pixels and the cluster centers was calculated, the pure background was selected as the new background. Each pixel in the new background will own its spectral angle information as the weight, which is given to every background pixel to construct weighted kernel RX anomaly detector to weaken the interference of the residual outliers and noise. To validate the effectiveness of the proposed algorithm, experiments were conducted on real hyperspectral data from AVIRIS and ROSIS-03 remote sensor. The results show that by comparison with the compared algorithms, the proposed algorithm has strong suppression ability against potential outliers and can improve the detection accuracy.
出处 《应用科技》 CAS 2017年第6期20-26,共7页 Applied Science and Technology
关键词 高光谱图像 K-均值聚类 加权 核RX 光谱角匹配 异常检测 光谱角余弦 背景净化 hyperspectral image K-means clustering weighted kernel RX spectral angle match anomaly detection spectral angle cosine background optimization
  • 相关文献

参考文献3

二级参考文献27

  • 1李智勇,匡纲要,郁文贤,薛绮.基于高光谱图像主成分分量的小目标检测算法研究[J].红外与毫米波学报,2004,23(4):286-290. 被引量:27
  • 2张兵,陈正超,郑兰芬,童庆禧,刘银年,杨一德,薛永祺.基于高光谱图像特征提取与凸面几何体投影变换的目标探测[J].红外与毫米波学报,2004,23(6):441-445. 被引量:21
  • 3谷延锋,刘颖,贾友华,张晔.基于光谱解译的高光谱图像奇异检测算法[J].红外与毫米波学报,2006,25(6):473-477. 被引量:17
  • 4寻丽娜,方勇华,李新.高光谱图像中基于端元提取的小目标检测算法[J].光学学报,2007,27(7):1178-1182. 被引量:27
  • 5Scharf L L,Friedlander B.Matched subspace detectors[J].IEEE Trans.on signal processing,1994,42(8):2146-2157.
  • 6Harsanyi J C,Chein I Chang.Hyperspectral image classification and dimensionality reduction:An orthogonal subspace projection[J].IEEE Trans.on Geoscience and Remote Sensing.1994,32(4):779-785.
  • 7Shaw G,Mankolakis D.Signal processing for hyperspectral image exploitation[J].IEEE Signal Processing Magazine,2002,19(1):12-16.
  • 8Reed I S,Yu X.Adaptive Multiple band CFAR Detection of an optical pattern with unknown spectral distribution[J].IEEE Trans.Acoust.,Speech Singal Process.1990,38(10):1760-1770.
  • 9Chang Chein I,Chiang Shao Shan.Anomaly detection and classification for hyperspectral imagery[J].IEEE Trans.on Geoscience and Remote Sensing.2002,40(6):1314-1325.
  • 10Chein I Chang,Hsuan Ren,Shao Shan Chiang.Real time processing algorithms for target detection and classification in hyperspectral imagery[J].IEEE Trans.on Geoscience and Remote Sensing.2001,39(4):760-768.

共引文献27

同被引文献12

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部