期刊文献+

Banach空间中一类脉冲微分方程周期边值问题解的唯一性及其误差估计 被引量:1

Uniqueness and Error Estimation of Solution of Periodic Boundary Value Problem for a Class of Impulsive Differential Equations in Banach Space
下载PDF
导出
摘要 该文引入L-拟上下解对的概念,在非紧性测度条件下考虑有序Banach空间E中一类脉冲微分方程周期边值问题解的存在性,通过构造L-拟解对的混合单调过程,得到其最小、最大L-拟解对的存在性、解的存在唯一性及其误差估计. In this paper, we introduce the concept of L-quasi-upper and lower solutions, and con-sider the existence of solution for periodic boundary value problem of Banach space with impulsive di-- ferential equations in the condition of noncompactness measure. By means of constructing a mixed monotone process of L-quasi-upper and lower solutions? the main results are obtained.Key Words: impulsive differential equation; boundary value p ro b lem; L -q u a i i-u p p e r and lower solution
出处 《广西师范学院学报(自然科学版)》 2017年第4期23-29,共7页 Journal of Guangxi Teachers Education University(Natural Science Edition)
基金 国家自然科学基金资助(11361010) 广西自然科学基金资助项目(2014GXNSFAA118002) 广西研究生教育创新计划项目(YCSW2017080) 广西高等学校高水平创新团队及卓越学者计划资助(2014年立项) 广西高校数学与统计模型重点实验室开放基金课题研究计划(2016年立项)
关键词 脉冲微分方程 边值问题 L-拟上下解对 impulsive differential equation boundary value problem L-quasi-upper and lower solution
  • 相关文献

参考文献4

二级参考文献31

  • 1孙经先,刘立山.非线性算子方程的迭代求解及其应用[J].数学物理学报(A辑),1993,13(2):141-145. 被引量:109
  • 2李永祥.抽象半线性发展方程初值问题解的存在性[J].数学学报(中文版),2005,48(6):1089-1094. 被引量:66
  • 3LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of impulsive differential equations[ M]. Singapore: World Scientific, 1989.
  • 4CARL S, HEIKKILA S. On discontinuous implicit and explicit abstract impulsive boundary value problems[ J]. Nonlinear Anallysis, 2000, 41: 701 - 723.
  • 5LIU Zhen-bin, LIU Li-shan, WU Yong-hong. Initial value problems in infinite interval of first order nonlinear impulsive integro-differential equa- tions in Banach spaces[J]. Dyn Contin Discrete Impuls Syst Ser, 2007, 14(A) :13 -26.
  • 6LI Yong-xiang, LIU Zhe. Monotone iterative technique for addressing impulsive integro-differential equtions in Banach spaces[ J]. Nonlinear Analysis, 2007, 66 : 83 - 92.
  • 7LAKSHMIKANTHAM V, LEELA S, VATSALA A S. Method of quasi-upper and lower solutions in abstract cones [ J ]. Nonlinear Analysis, 1982, 6:833-838.
  • 8GUO Da-jun, LAKSHMIKANTHAM V. Coupled fixed points of nonlinear operator with applications [ J ]. Nonlinear Analysis, 1987, 11 : 623 - 632.
  • 9HEINZ H P. On the behaviour of measure of noncompactness with respect to differentiation and integration of rector-valued functions[ J]. Nonlinear Analysis, 1983, 7 : 1351 - 1371.
  • 10郭大钧,抽象空间常微分方程,1989年

共引文献185

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部