期刊文献+

加权空-谱自适应近邻聚类的高光谱图像分类 被引量:2

Hyperspectral image classification using weighted spatial and spectral clustering with adaptive neighbors
下载PDF
导出
摘要 高光谱图像聚类算法可以对海量的高光谱图像数据进行信息提取,完成地物类别的初步分类。自适应近邻聚类(clustering with adaptive neighbors,CAN)作为一种新型的聚类算法,利用样本间的局部连通性实现聚类,聚类效果较好,但是该算法的性能受样本间相关性的影响较大。基于此,文章提出了一种新的融合高光谱图像的空间信息和光谱信息的分类方法,即加权空-谱自适应近邻聚类(weighted spatial and spectral clustering with adaptive neighbors,WSS-CAN)法,该方法通过引入样本点的近邻窗口尺度和光谱因子2个参数对高光谱图像进行重构,增强了样本间的相关性,对重构后的图像进行CAN聚类,有效提高了分类精度。在Indian Pines和Salinas-A数据库上的实验结果表明,由WSS-CAN得到的总体精度分别为56.33%、77.90%,分别比其他聚类算法提升了11.52%~18.47%、10.1%~14.79%,聚类效果较好。 The algorithm of hyperspectral images(HSI) clustering can extract the valuable infor-mation, which can be used to classify the ground truth? from vast HSI data. Clustering with adaptive neighbors (CAN),a new clustering algorithm, performs well by using the local connectivity effective-ly, but the result is susceptible to the correlation of samples. Inclassification method,weighted spatial and spectral clustering with adaptive neighbors(WSS-CAN) is proposed. This algorithm combines both spatial window and spectral factor to rewhich strengthens the correlation of pixels. CAN is used to cluster the reconstructed data, thus in-creasing the classification accuracy. The benchmark tests on Indian Pines and Salinas-A demonstrate that the performance ofWSS-CAN is better than that of other algorithms. The beaccuracy(OA) obtained by WSS-CAN on the HSI datasets is 56. 33 % and 77. 90 % receeding that by other algorithms 11. 52%-18. 47% and 10. 1%-14. 79%.
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2017年第12期1604-1609,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61401471) 中国博士后科学基金资助项目(2014M562636)
关键词 聚类算法 自适应近邻聚类 空间信息 光谱信息 加权空-谱自适应近邻聚类 高光谱图像分类 clustering algorithm clustering with adaptive neighbors (CAN) spatial information spectral information weighted spatid and spectral clustering with adaptive neighbors(WSS-CAN) hyperspectral image classification
  • 相关文献

参考文献7

二级参考文献85

  • 1唐宏,杜培军,方涛,施鹏飞.光谱角制图模型的误差源分析与改进算法[J].光谱学与光谱分析,2005,25(8):1180-1183. 被引量:16
  • 2汤胜清,程小华.一种基于多层前向神经网络的谐波检测方法[J].中国电机工程学报,2006,26(18):90-94. 被引量:58
  • 3高丽,杨树元,李海强.一种基于标记的分水岭图像分割新算法[J].中国图象图形学报,2007,12(6):1025-1032. 被引量:110
  • 4陈亮,刘希,张元.结合光谱角的最大似然法遥感影像分类[J].测绘工程,2007,16(3):40-42. 被引量:23
  • 5PLAZA A,BENEDIKTSSON J A,BOARDMAN J W.Recent advances in techniques for hyperspectral image processing[J].Remote Sensing of Environment 2009,113:S110-S122.
  • 6LANDGREBE D.Hyperspectral image data analysis[J].IEEE Signal Processing Magazine,2002,19(1):17-28.
  • 7LANDGREBE D.On information extraction principles for hyperspectral data:a white paper[R].West Lafayette,Indianan,USA:Purdue University.School of Electrical and Computer Engineering,1997.
  • 8SUN Yijun.Iterative relief for feature weighting:algorithms,theories,and applications[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(6):1035-1051.
  • 9KUNCHEVA L I.Combining pattern classifiers:methods and algorithms[M].New York,USA:Wiley,2004.
  • 10HOT H.The random subspace method for constructing decision forests[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20(8):832-844.

共引文献95

同被引文献25

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部