期刊文献+

迭代去噪收缩阈值算法重构压缩全息

The Reconstruction of Digital Holography Based on Iterative De-Noising Shrinkage-Thresholding Algorithm
下载PDF
导出
摘要 为了解决全息图像数据在传输过程中占用大量内存并在一定程度上增加设计成本的问题,在数字全息成像技术中,应用压缩感知理论,提出了一种基于迭代去噪收缩阈值算法(IDNST)的数字全息重构方法.IDNST算法引入了去噪迭代因子和正则化收缩因子,利用前2次迭代的值、不断更新的迭代参数以及不断收缩的正则化参数来获得新的迭代值,加快了收敛速度,提高了全息图像的重构精度.仿真结果表明,所提出方法能够高概率地恢复出原始图像. A novel algorithm,namely iterative de-noising shrinkage-thresholding(IDNST)algorithm,is presented to reconstruct the original image from digital holography in a compressed sensing framework.The proposed algorithm can reduce the computational complexity in classical digital holography process,as well as the data in transmission.The proposed algorithm adopts two new factors,i.e.,the de-noising iteration factor and the shrinkage factor of regularization.Furthermore,the proposed algorithm obtains a new iterative value using the previously updated iterative values,the iteration factor and the shrinking regularization parameter.This improves the convergence speed and the reconstruction accuracy.Simulation results show that the original image can be reconstructed from the digital hologram perfectly with high probability by the IDNST algorithm.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2017年第12期1435-1442,共8页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金项目(61573276) 国家自然科学基金创新研究群体科学基金项目(61221063)资助 国家重点基础研究发展规划(973)项目(2013CB329405)
关键词 压缩感知 数字全息 全息图的稀疏表示 观测矩阵 迭代去噪收缩阈值算法 compressed sensing digital holography sparse representation of hologram measurement matrix iterative de-noising shrinkage-thresholding algorithm (IDNST)
  • 相关文献

参考文献3

二级参考文献39

  • 1GARCIA - SUCERQUIA J, RAMfREZ J H, CASTANE- DA R. Incoherent recovering of the spatial resolution in digital holography [ J ]. Optics Communications, 2006, 260:62 - 67.
  • 2DARAKIS E, NAUGHTON T J, SORAGHAN J J. Com- pression defects in different reconstructions from phase - shifting digital holographic data [ J ]. Applied Optics, 2007, 46 : 4579 - 4586.
  • 3CANDI:S E, ROMBERG J, TAO T. Robust uncertainty principles: Exact signal reconstruction from highly incom- plete frequency information [ J ]. IEEE Transactions on Information Theory, 2006, 52(2) : 489 -509.
  • 4DONOHO D L. Compressed sensing [ J ]. IEEE Transac- tions on Information Theory, 2006, 52(4) : 1289 -1306.
  • 5CANDI:S E. Compressive sampling[ C ] //lEEE Proceed- ings of International Congress of Mathematicians. ZUrich, Switzerland, 2006 : 1433 - 1452.
  • 6BARANIUK R. Compressive sensing [ J ]. IEEE Signal Processing Magazine, 2007, 24(4): 118- 121.
  • 7CANDI:S E, ROMBERG J. Sparsity and incoherence in compressive sampling [ J ]. Inverse Problems, 2007, 23 (3) : 969 - 985.
  • 8CANDI:S E, TAO T. Near optimal signal recovery from random projections : Universal encoding strategies? [ J ]. IEEE Transactions on Information Theory, 2006, 52 (12) : 5406 -5425.
  • 9MARIM Marcio M, ATLAN Michael, ANGELINI Elsa, et al. Compressed sensing with off - axis frequency - shifting holography [ J ]. Optics Letters, 2010,35 ( 6 ) : 871 - 873.
  • 10BRADY D J. Compressive holography [ J ]. Opt Ex- press, 2009, 17(15): 13040-13049.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部