期刊文献+

湿滑道面飞机轮胎临界滑水速度数值仿真 被引量:10

Numerical simulation of critical hydroplaning speed of aircraft tire under wet pavement condition
原文传递
导出
摘要 采用ABAQUS建立了基于CEL算法的飞机轮胎与积水道面流固耦合分析模型,推导了轮胎接触面动水压强与道面竖向支撑力表达式,对比了飞机起飞与着陆过程中的滑行状态,提出了临界滑水速度的上下限解概念,校核了轮胎模型静态变形与动态滑水特征,研究了胎压、胎纹与水膜厚度的影响规律,分析了轮胎接地面积与动水压强分布。仿真结果表明:在76.6kN轴载作用下,轮胎模型接地面积为0.076m2,轮胎中心竖向变形约为3.27cm,轮胎临界滑水速度为128.5~222.4km·h^(-1),与NASA轮胎滑水试验数据一致,验证了仿真模型的合理性和适用性;在胎压为1 140kPa时,减速冲击条件下飞机轮胎临界滑水速度为163km·h^(-1),小于加速冲击时的上限226km·h^(-1),轮胎接地面积明显减小,道面支撑力低于机轮轴载的10%;在450~1 109kPa胎压范围内,减速冲击时临界滑水速度下限较NASA经验公式计算结果更为保守,两者相差30~70km·h^(-1);轮胎纵向沟槽排水可降低轮胎前缘动水压强峰值,增大轮胎接地面积,减速冲击时带纹轮胎临界滑水速度较光滑轮胎提高了26.9%~28.8%,增幅约为加速冲击时的2倍;当道面水膜厚度由3mm增加至13mm时,胎压为1 140kPa的飞机轮胎临界滑水速度上下限分别降低了85km·h^(-1)和43km·h^(-1);在低胎压、厚水膜与减速冲击条件下,临界滑水速度下限仅为127km·h^(-1),低于常见飞机进近接地速度205~250km·h^(-1),因此,滑水事故风险增加。 A fluid-solid coupling analysis model of aircraft tire and wet pavement based on CEL algorithm was developed by using ABAQUS.The expressions of hydrodynamic pressure of tire contact and vertical supporting force of pavement were derived.The taxiing conditions between aircraft take-off and landing process were compared.The concepts of upper and lower limit solutions of critical hydroplaning speed were proposed.The features of static deformation and dynamic hydroplaning of tire model were verified.The influence rules of tire pressure,tire pattern and water-film thickness were discussed. The contact area and distribution of hydrodynamic pressure for tire were analyzed.Simulation result indicates that the tire contact area is0.076 m2 under axle load of 76.6 kN,the vertical deformation at the centre of tire is 3.27 cm,and thecritical hydroplaning speed is 128.5-222.4 km·h^-1,which is in consistence with the result of NASA's tire hydroplaning test.Therefore,the rationality and feasibility of simulation model are proved.When tire pressure is 1 140 kPa,the critical hydroplaning speed of aircraft tire under decelerating impact is 163 km·h^-1 and lower than upper limit of accelerating impact(226 km·h^-1),the tire contact area obviously reduces,and the supporting force from the pavement to the tire is less than 10% of wheel load.In comparison with the calculation result of NASA's empirical equation,the lower limits of critical hydroplaning speed under decelerating impact are more conservative within the scope of tire pressure from 450 kPa to 1 109 kPa,and the difference is30-70 km·h^-1.The drainage effect of radial tire pattern can reduce the peak value of hydrodynamic pressure at the leading edge of aircraft tire and increase the tire contact area.The critical hydroplaning speed of aircraft tire with tire pattern under decelerating impact increases by26.9%-28.8% comparing with the speed of smooth tire,and the amplification is twice as much as that of accelerating impact.As the water-film thickness increases from 3 mm to 13 mm,the upper and lower limits of critical hydroplaning speed of aircraft tire respectively reduce by 85 km·h^-1 and 43 km·h^-1 when the tire pressure is 1 140 kPa.In case of lower tire pressure and thicker water-film,the lower limit of critical hydroplaning speed is merely 127 km·h^-1 under decelerating impact and lower than most aircrafts'landing speeds 205-250 km·h^-1,so the risk of hydroplaning accident increases.
出处 《交通运输工程学报》 EI CSCD 北大核心 2017年第5期90-101,共12页 Journal of Traffic and Transportation Engineering
基金 国家自然科学基金项目(51508559) 天津市科技计划项目(14ZCZDGX00001) 中央高校基本科研业务费专项资金项目(3122014C013) 中国民航大学省部级科研机构开放基金项目(KFJJ2014JCGC07)
关键词 飞机轮胎 湿滑道面 流固耦合分析模型 临界滑水速度 CEL算法 轮胎接地轮廓 动水压强 aircraft tire wet pavement fluid-solid coupling analysis model critical hydroplaning speed Coupled Eulerian-Lagrangian algorithm tire print hydrodynamic pressure
  • 相关文献

参考文献10

二级参考文献68

  • 1Gui-xia Liu, Wei Feng, Han Wang, Lei Liu, Chun-guang ZhouCollege of Computer Science and Technology, Jilin University, Changchun 130012,P.R. China.Reconstruction of Gene Regulatory Networks Based on Two-Stage Bayesian Network Structure Learning Algorithm[J].Journal of Bionic Engineering,2009,6(1):86-92. 被引量:4
  • 2季天剑,黄晓明,刘清泉,唐国奇.沥青路面表面水膜厚度试验[J].公路交通科技,2004,21(12):14-17. 被引量:32
  • 3沙庆林.高速公路沥青路面早期损坏与对策[J].长沙理工大学学报(自然科学版),2006,3(3):1-6. 被引量:52
  • 4王惠文,孟洁.多元线性回归的预测建模方法[J].北京航空航天大学学报,2007,33(4):500-504. 被引量:239
  • 5Hovan Jean Michel. Measurement and analysis of pore water presthawing pavement structures subjected to dynamic loading[ D ]. Univ of Minnesota, USA, 1997.
  • 6Fwa T F,Ong G P. Transverse pavement grooving against hydroplaning II : Design [ J ]. Journal of Transportation Engineering, 2006,132 (6) :449 --457.
  • 7Zhou Changhong, Wang Zheren, Chen Jingyun, et al. Numerical computation and analysis on dynamic pore water pressure in asphalt pavement [ C ]//International Conference on Transportation Engineering 2007, American Society of Civil Engineers, 2007 : 2981 --2986.
  • 8Pan Baofeng, Shao Longtan, Tong Yu, et al. Development and application of experiment apparatus for road material[ C ]//International Conference on Transportation Engineering 2007, American Society of Civil Engineers,2007:1493 -1498.
  • 9Maaskant R, Alavie T, Measures R M, et al. Fiber-optic Bmgg grating sensors for bridge monitoring [ J ]. Cement Concrete Corn, 1997(19) : 21 -33.
  • 10德贝林.测量系统应用与设计[M].北京:机械工业出版社,2007.

共引文献130

同被引文献76

引证文献10

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部