期刊文献+

基于色散补偿光子晶体光纤的双通道光子时间拉伸模数转换器系统研究 被引量:2

Dual-Channel Photonic Time-Stretched Analog-to-Digital Converter System Based on Dispersion Compensating Photonic Crystal Fiber
原文传递
导出
摘要 研究了色散补偿光子晶体光纤(DC-PCF)对双通道光子时间拉伸模数转换器(PTS-ADC)的性能影响。通过理论推导验证了DC-PCF抑制PTS-ADC中三阶谐波产生的原理。设计了一种基于DC-PCF的双通道PTS-ADC系统,利用Optisystem软件对该系统进行仿真研究,分别对5组不同的输入射频(RF)信号(16.25,20.25,24.25,28.25,32.25GHz)进行模数转换,对比DC-PCF和色散补偿光纤(DCF)作为色散介质时系统的有效量化位数等性能参数。仿真结果表明,DC-PCF能够有效抑制三阶谐波的产生,提高双通道PTS-ADC的量化精度。 The effect of dispersion compensating photonic crystal fiber (DC-PCF) on dual-channel photonic time- stretched analog-to-digital converter (PTS-ADC) is studied. The principle that DC-PCF can suppress third-order harmonic in PTS-ADC is theoretically verified. The dual-channel PTS ADC based on DC-PCF is designed and simulated with the Optisystem software. The effective number of bits (ENOB) of PTS-ADC is simulated and compared between DC-PCF and dispersion compensation fiber (DCF) as dispersive mediums under the condition of five different input radio frequencies (RF) signals (16.25, 20.25, 24.25, 28.25, 32.25 GHz). The simulation results show that DC-PCF can effectively suppress the generation of third-order harmonics and improve the quantization resolution of dual channel PTS-ADC system.
出处 《光学学报》 EI CAS CSCD 北大核心 2017年第12期62-69,共8页 Acta Optica Sinica
基金 国家863计划(2015AA7031093C)
关键词 光纤光学 色散补偿光子晶体光纤 光子时间拉伸模数转换器 色散补偿光纤 谐波抑制 fiber optics dispersion compensating photonic crystal fiber photonic time-stretched analog-to-digital converter dispersion compensating fiber harmonic suppression
  • 相关文献

参考文献3

二级参考文献45

  • 1文国庆,张树葵,周丕璋,陈骥,邬玉婷,满永在.超短脉冲激光的脉宽测量[J].强激光与粒子束,1995,7(2):309-312. 被引量:5
  • 2George C Valley. Photonic analog-to-digital converters[J]. Optics Express, 2007, 15(5): 1955-1982.
  • 3A O J Wiberg, Z Tong, L Liu, et al.. Demonstration of 40 GHz analog-to-digital conversion using copy-and-sample-all parametric processing[C]. OFC, 2012: OW3C.2.
  • 4A Khilo, S J Spector, M E Grein, et al.. Photonic ADC: overcoming the bottleneck of electronic jitter[J]. Opt Express, 2012, 20(4): 4454-4469.
  • 5F Coppinger, A S Bhushan, B Jalali. Photonic time stretch and its application to analog-to-digital conversion[J]. IEEE Transactions on Microwave Theory and Technique, 1999, 47(4): 1309-1314.
  • 6Yah Han, Bahrain Jalali. Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations [J]. Journal of Lightwave Technology, 2003, 21 (12): 3085-3103.
  • 7Jason Chou, Ozdal Boyraz, Daniel Solli, et al.. Femtosecond real-time single-shot digitizer[J]. Applied Physics Letters, 2007, 91 (16): 161105.
  • 8Li Sha, Yu Chongxiu. Ultrahigh sampling rate photonic time stretch analog-to-digital converter employing phase modulation[J]. Optik, 2013, 124(20): 4539-4543.
  • 9Chen Ying, Chi Hao, Jin Tao, et al.. Sub-Nyquist sampled analog-to-digital conversion based on photonic time stretch and compressive sensing with optical random mixing[J]. Journal of Lightwave Technology, 2013, 31(21): 3395-5401.
  • 10Li Hongnan, Zou Weiwen, Chen Jianping. Removal of dispersion penalty of time-stretch photonic analog-to-digital conversion system by use of chirped intensity modulator[C]. Asia Communications and Photonics Conference, 2014: AThl F. 1.

共引文献13

同被引文献11

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部