期刊文献+

全局模型和局部优化的深度网络显著性检测 被引量:19

Deep Network Saliency Detection Based on Global Model and Local Optimization
原文传递
导出
摘要 设计有效的特征向量是显著性检测方法的关键,决定了模型效果的上限,基于深度卷积神经网络和手工提取特征相结合的思路,提出了一种新的基于全局模型和局部搜索的显著性检测方法。在全局模型中,通过对VGG-16网络设计额外的卷积层进行训练,生成初始显著图,达到了从图像整体角度预测每一个候选区域显著性的目的。在局部优化模型中,设计区域对比度描述子和区域特征描述子对多级分割的超像素点进行描述,预测每一个区域的显著性值。最后,利用线性拟合的方法将两种模型中产生的显著图进行融合,得到最终的显著图。对4个数据集进行对比测试实验,实验结果表明,本文方法具有最高的准确率。 The design of the effective feature vectors is the key to the saliency detection algorithm, which determines the upper bound of the model effect. A new saliency detection algorithm based on global model and local search is proposed by combining the deep convolution neural networks and the hand-crafted features. In the global model, the initial saliency map is generated from designing the extra convolution layers for VGG-16 network training, and thus the saliency value of each object candidate region can be predicted from a global perspective. In local optimization model, the super-pixel region with multi-degree segmentation is described by designing the contrast descriptors and region characteristic descriptors, and the saliency score of each region is predicted. Finally, a linear fitting method is used to fuse the result generated from two models, and the final saliency map is obtained. Contrast experiments for four data sets are demonstrated and the results show that the proposed algorithm has the highest precision.
出处 《光学学报》 EI CAS CSCD 北大核心 2017年第12期264-272,共9页 Acta Optica Sinica
基金 国家自然科学基金(61303192)
关键词 机器视觉 显著性检测 卷积神经网络 超像素分割 区域对比度 区域特性 machine vision saliency detection convolution neural network super-pixel segmentation regional contrast region characteristic
  • 相关文献

参考文献2

二级参考文献28

  • 1Itti L, Koch C, Niebur E. A model of saliency-based visual attentionfor rapid scene analysis[J]. IEEE Transactions on PatternAnalysis and Machine Intelligence, 1998, 20(11): 1254-1259.
  • 2Harel J, Koch C, Perona P. Graph-based visual saliency[J].Advances in Neural Information Processing System, 2006, 19:545-552.
  • 3Hou X D, Zhang L Q. Saliency detection: a spectral residualapproach[C] //Proceedings of IEEE Conference on ComputerVision and Pattern Recognition. Los Alamitos: IEEE ComputerSociety Press, 2007: 1-8.
  • 4Li X, Li Y, Shen C H, et al. Contextual hypergraph modelingfor salient object detection[C] //Proceedings of IEEE InternationalConference on Computer Vision. Los Alamitos: IEEEComputer Society Press, 2013: 3328-3335.
  • 5Yang C, Zhang L, Lu H C, et al. Saliency detection viagraph-based manifold ranking[C] //Proceedings of IEEE Conferenceon Computer Vision and Pattern Recognition. LosAlamitos: IEEE Computer Society Press, 2013: 3166-3173.
  • 6Scharfenberger C, Wong A, Fergani K, et al. Statistical texturaldistinctiveness for salient region detection in natural images[C]//Proceedings of IEEE Conference on Computer Vision andPattern Recognition. Los Alamitos: IEEE Computer SocietyPress, 2013: 979-986.
  • 7Xie Y L, Lu H C, Yang M H. Bayesian saliency via low andmid level cues[J]. IEEE Transactions on Image Processing,2013, 22(5): 1689-1698.
  • 8Yan Q, Xu L, Shi J P, et al. Hierarchical saliency detection[C]//Proceedings of IEEE Conference on Computer Vision andPattern Recognition. Los Alamitos: IEEE Computer SocietyPress, 2013: 1155-1162.
  • 9Zou W B, Komodakis N. HARF: hierarchy-associated richfeatures for salient object detection[C] //Proceedings of IEEEInternational Conference on Computer Vision. Los Alamitos:IEEE Computer Society Press, 2015: 406-414.
  • 10Zhang D W, Meng D Y, Li C, et al. A self-paced multiple-instance learning framework for co-saliency detection[C]//Proceedings of IEEE International Conference on ComputerVision. Los Alamitos: IEEE Computer Society Press, 2015:594-602.

共引文献164

同被引文献72

引证文献19

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部