摘要
针对无线通信中训练序列的优化及提高无线信道的传输性能,提出了改进的基于叠加周期训练序列的MIMO信道估计算法,利用设计的训练序列和信息序列不相关性,在接收端利用训练序列的周期性构造一阶统计量,利用循环Toeplitz矩阵特性,快速进行信道估计,不会带来带宽的损失。仿真显示,利用该算法使用设计的L序列比使用脉冲序列有更好的估计性能,且具有较快的运算速度,这对于实际的应用有很大的参考价值。
Aiming at the optimization of the training sequence in wireless communication and improving the transmission performance of the wireless channel, this paper puts forward an improved MIMO channel estimation algorithm based on the superimposed periodic training sequence. By utilizing the characteristic of periodic sequences, channel estimation can be achieved only based on firstorder statistics of receiving symbols. Using the cyclic Toeplitz matrix to proceed channel estimating algorithm fast would not lead to bandwidth's loss. The simulation results show that the proposed L-sequence using the proposed algorithm has better performance than the pulse sequence, besides, the L-sequence has faster computational speed, which has great reference value for the practical application.
出处
《北京印刷学院学报》
2017年第8期36-38,43,共4页
Journal of Beijing Institute of Graphic Communication
基金
安徽省高校自然科学重点项目"无线通信MIMO系统中基于叠加训练序列快速信道估计研究"成果(编号:KJ2016A446)
关键词
叠加训练序列
多输入多输出
信道估计
循环Toeplitz
superimposed training sequence
multiple-input and multiple-output(MIMO)
channel estimation
cyclic Toeplitz