期刊文献+

一种基于Faster R-CNN的车辆检测算法 被引量:16

A Vehicle Detection Method Based on Faster R-CNN
下载PDF
导出
摘要 针对传统的车辆检测算法无法自适应地完成在复杂场景变化下提取目标相应特征的现象,提出了一种基于深度学习的车辆检测算法,该算法结合了Faster R-CNN开源框架和Loc Net网络算法。首先,利用RPN算法获得图片中的候选区域,以减少检测过程中对每张图片的计算量;然后,进入Fast R-CNN网络,利用该深度网络中的卷积层和池化层,自适应地获得车辆目标的所有特征;最后,进入Loc Net网络,通过输入已经得到的图片候选区域,通过卷积层和池化层,不断计算候选区域边界的概率,达到不断优化候选区域边界,最后得到车辆目标的边界框。使用深度学习卷积神经网络,可以避免人工设计车辆目标特征适用性不广泛的缺点,提升车辆目标检测和定位的准确性。 Aiming at the problem that the traditional vehicle detection algorithm cannot adaptively carry out the corresponding feature under the complex scene change,this paper proposes a vehicle detection algorithm based on depth learning,which combines the Faster R-CNN open source framework and the LocNet network algorithm.First of all,the use of RPN algorithm to obtain the candidate area in the pictures,which can reduce the detection process for each picture of the amount of calculation;then entering the Fast R-CNN network,the convolution and pooling layers in the depth network can be used to obtain the characteristics of all vehicle targets in the picture,which can adaptively obtain all the features without the need for artificial design features;finally,after entering the Loc Net network,through the input of the image candidate areas,through the convolution layer and pool layer,which can continue to calculate the probability of candidate region boundaries,to continuously optimize the candidate area boundaries,and finally get the vehicle target bounding box.In conclusion,the depth of learning convolution neural network can avoid the shortcomings of manual design of vehicle target characteristics.As the traditional method of vehicle target detection cannot get higher accuracy,the method in this paper can improve the accuracy of vehicle target detection and positioning.
出处 《西南科技大学学报》 CAS 2017年第4期65-70,94,共7页 Journal of Southwest University of Science and Technology
基金 国家自然科学基金项目(61303127) 四川省科技厅科技支撑计划(2015GZ0212 2014SZ0223) 特殊环境机器人技术四川省重点实验室开放基金资助项目(13zxtk05)
关键词 车辆检测 卷积神经网络 FASTER R-CNN LocNet网络 Vehicle detection Convolution neural network Faster R-CNN Loc Net network
  • 相关文献

参考文献2

二级参考文献18

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2贾婧,葛万成,陈康力.基于轮廓结构和统计特征的字符识别研究[J].沈阳师范大学学报(自然科学版),2006,24(1):43-46. 被引量:11
  • 3侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 4万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 5廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 6Al-Hmouz R, S Challa. Intelligent Stolen Vehicle Detection using Video Sensing [C]// Proceeding of Information, Decision and Control. Adelaide, Qld., Australia. USA: IEEE, 2007: 302-307.
  • 7LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition [C]//Proc. IEEE, 1998. USA: IEEE, 1998: 2278-2324.
  • 8Steve Lawrence, C Lee Giles, Ah Chung Tsoi, Andrew D Back. Face Recognition: A Convolutional Neural Network Approach [J]. IEEE Trans. on Neural Networks (S1045-9227), 1997, 8(1): 98-113.
  • 9Lauer F, C Y Suen, Bloch G. A trainable featare extractor for handwritten digit recognition [J]. Pattern Recognition (S0031-3203), 2007, 40(6): 1816-1824.
  • 10Tivive, Fok Hing Chi, Bouzerdoum, Abdesselam. An eye feature detector based on convolutional neural network [C]// Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. USA: IEEE, 2005: 90-93.

共引文献448

同被引文献73

引证文献16

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部