期刊文献+

氘氚冰层对惯性约束聚变冷冻靶温度场分布的理论模拟

Theoretical Simulation of Deuterium-tritium Ice Layer Effects on Temperature Field Distribution of Inertia Constrained Fusion Cryogenic Target
下载PDF
导出
摘要 惯性约束聚变冷冻靶制备过程中,要求在靶丸内形成均匀光滑的氘氚冰层,需要靶丸周围存在均匀的热环境条件。对均匀冰层和非均匀冰层展开了数值模拟分析,讨论了冰层偏移对温度场的影响情况,通过对模拟结果的温度分布和流体力学分析,得到了冰层对冷冻靶温度场的影响规律。结果显示,氘氚冰层厚度的增加、体积热的增加都会造成靶丸温度不均匀性增大,冰层的偏移可以通过辅助加热的方式来改善,但是径向偏移对靶丸温度均匀性影响更大。 Inertial confinement fusion(ICF) design requires smooth and uniform deuterium-tritium(DT) ice layers in a spherical shell and uniform thermal environment around the capsule.In this paper,numerical simulation analysis of uniform ice layer and non-uniform ice layer is carried out.By analyzing the temperature distribution and flow field of the simulation results,the influence of ice layer on temperature field of cryogenic target is obtained.The results show that with the increasing ice thickness,or increasing volume heat,the target temperature uniformity will deteriorate;the influence of the ice drift can be improved by applying auxiliary heating and the radial deviation of the ice layer has a greater effect on the uniformity of the target temperature.
出处 《西南科技大学学报》 CAS 2017年第4期95-99,共5页 Journal of Southwest University of Science and Technology
基金 国家自然科学基金资助(U1230105)
关键词 惯性约束聚变 氘氚冰层 自然对流 热模拟 Inertial confinement fusion(ICF) Deuterium and tritium Ice layer Free convection flow Thermal simulation
  • 相关文献

参考文献2

二级参考文献12

  • 1Hoffer J K, Foreman L R. Radioactive induced sublimation in solid tritium[J]. Phys Rev Lett, 1988, 60, 1310-1314.
  • 2Sanchez J J, Giedt W H. Predicting the equilibrium deuterium-tritium fuel layer thickness profile in a indirect-drive hohlraum capsule[J]. Fusion Sci Technol, 2004, 45: 253-261.
  • 3Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Phy Plasma, 2004, 11(2) :339-491.
  • 4Giorla J, Bastian J, Bayer C. Target design for ignition experiments on the laser Megajoule facility[J]. Plasma Phys Control Fusion, 2006, 48: 75-82.
  • 5Baclet P, Bachelet F, Choux A, et al. Research program for the fabrication of the cryogenic target to reach ignition on the LMJ, results and prospects[J]. Fusion Sci Technol, 2006, 49: 565-573.
  • 6Moll G, Baelet P, Martin M. Recent results in thermal and hydrodynamic simulations of cryogenic target for LMJ[J]. Fusion Sci Technol, 2006, 49z 574-580.
  • 7Sanchez J J, Giedt W H. Thermal control of cryogenic cylindrical hohlraums for indirect drive inertial confinement fusion[J]. Fusion Sci Technol, 1999, 36: 346-355.
  • 8Moll G, Charton S. Update on thermal and hydrodynamic simulations on LMJ cryogenic target[J]. Fusion Sci Technol, 2004, 45: 233-244.
  • 9Charton S, Fabre A, Baclet P. Cryogenic indirect drive target: a thermal study[J]. Fusion Sci Technol, 2000, 38: 156-160.
  • 10Moll G, Martin M, Baclet P. Thermal simulations of the LMJ cryogenic target[J]. Fusion Sci Technol, 2007, 51: 737-746.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部