摘要
对于二阶半线性中立型微分方程:(r(t)︱h′(t)︱^(α-1)h′(t))′+g(t)︱x(σ(t))︱^(α-1)x(σ(t))=0的振动性,本文在文[1]的基础上,利用广义Riccati变换、函数单调性和经典不等式,对其做了进一步研究,建立新准则改进了文献的结果,并提供了证明,并给出例子.
This paper considered oscillatory behavior of a class of second-order linear differential equation of the form (r(t)︱h′(t)︱^(α-1)h′(t))′+g(t)︱x(σ(t))︱^(α-1)x(σ(t))=0.Using ageneralized Riccati transform,classical inequality and functional monotonicity,we have made further study on it due to Ravi P et al.[1].A new oscillation criterion is established to amend the related results reported in the literature.We have proved the new oscillation criterion and an example is given.
出处
《岭南师范学院学报》
2017年第6期15-20,共6页
Journal of Lingnan Normal University
基金
国家自然科学基金(11271380)
茂名市科技局软科学项目(20140340
2015038)
广东省大学生2017创新创业培育项目(2017pyA034)
关键词
广义Riccati变换
振动
二阶微分方程
oscillation
ageneralized Riccati transform
second-order differential equation