期刊文献+

一类二阶微分方程的振动准则

Oscillate Criteria for a Kind of Second-order Differential Equations
下载PDF
导出
摘要 对于二阶半线性中立型微分方程:(r(t)︱h′(t)︱^(α-1)h′(t))′+g(t)︱x(σ(t))︱^(α-1)x(σ(t))=0的振动性,本文在文[1]的基础上,利用广义Riccati变换、函数单调性和经典不等式,对其做了进一步研究,建立新准则改进了文献的结果,并提供了证明,并给出例子. This paper considered oscillatory behavior of a class of second-order linear differential equation of the form (r(t)︱h′(t)︱^(α-1)h′(t))′+g(t)︱x(σ(t))︱^(α-1)x(σ(t))=0.Using ageneralized Riccati transform,classical inequality and functional monotonicity,we have made further study on it due to Ravi P et al.[1].A new oscillation criterion is established to amend the related results reported in the literature.We have proved the new oscillation criterion and an example is given.
出处 《岭南师范学院学报》 2017年第6期15-20,共6页 Journal of Lingnan Normal University
基金 国家自然科学基金(11271380) 茂名市科技局软科学项目(20140340 2015038) 广东省大学生2017创新创业培育项目(2017pyA034)
关键词 广义Riccati变换 振动 二阶微分方程 oscillation ageneralized Riccati transform second-order differential equation
  • 相关文献

参考文献3

二级参考文献17

  • 1徐志庭,邢鸿雁.Kamenev-type Oscillation Criteria for Semilinear Elliptic Differential Equations[J].Northeastern Mathematical Journal,2004,20(2):153-160. 被引量:2
  • 2Bohner M, Saker S H. Oscillation of damped second order nonlinear delay differential equations of Emden- Fowler type. Adv Dyna Syst Appl, 2006, 1(2): 163 182.
  • 3Hao Q H, Lu Fang. Oscillation theorem for superlinear second order damped differential equations. Appl Math Comput, 2011, 21T: 7126-7131.
  • 4Kirane M, Rogovchenko Y V. Oscillation results for a second order damped differential equation with nonmonotonaus nonlinearity. J Math Anal Appl, 2000, 25:118-138.
  • 5Fang Lu, Fangwei Meng. Oscillation theorems for superlinear second order damped differential equations. Appl Math Comput, 2007, 189:796-804.
  • 6Manojlovic J V. Integral averages and oscillation of second order nonlinear differential equations. Comput Math Appl, 2001, 41:1521-1534.
  • 7Philos Ch G. Oscillation theorems for linear differential equations of second order. Arch Math (Basel), 1989, 53:482492.
  • 8Philos Ch G. Integral averages and oscillation of second order sublinear differential equations. Diff Integ equat, 1991, 4:205-213.
  • 9Rogovchenko Y V. Oscillation theorems for second order equations with damping. Nonlinear Anal, 2000, 41:1005-1028.
  • 10Rogovehenko S P, Rogovchenko Y V. Oscillation results of second order differential equations with damping. Dyn Contin Discrete Impuls Syst Ser A: Math Anal, 2003, 10:44461.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部