期刊文献+

融合失效样本与截尾样本的滚动轴承寿命预测 被引量:8

Life prediction for rolling bearings utilizing both failure and truncated samples
下载PDF
导出
摘要 针对常规寿命预测方法依赖于失效样本、无法有效利用截尾样本的局限性,提出一种融合失效样本和截尾样本的滚动轴承寿命预测方法。基于函数型主成分分析方法对反映轴承退化的特征量建立趋势模型,将各特征量分解为均值、特征向量和主成分得分向量;通过最小化截尾样本与失效样本主成分得分向量间的相似性指标估计各截尾样本最优寿命值;基于特征量趋势模型估计各样本全寿命阶段内特征值,生成训练数据;采用最小二乘支持向量机建立预测模型用于轴承寿命估计。滚动轴承寿命预测试验表明该方法能利用截尾样本提高寿命预测精度,且对一定程度的数据缺失具有鲁棒性。 To overcome the limitations that the traditional bearing life prediction method relies on a database of failure samples and it cannot effectively utilize truncated samples,an intelligent method utilizing both failure and truncated samples was proposed for bearing life prediction. Firstly,the trend model for features characterizing bearing degradation was constructed based on the function principal component analysis( FPCA),and each feature was decomposed into a mean value,an eigenvector and a score vector of function principal components( FPC-scores). Secondly,the optimal life value of each truncated sample was estimated by minimizing the similarity index between its score vector and those of failure ones. Thirdly,all features in the whole life duration of each sample were estimated and reconstructed based on the feature trend model to generate training data. Finally,the prediction model was constructed based on a least square support vector machine for bearing life prediction. The test results of rolling bearings' life prediction showed that the proposed method can improve the bearing life prediction accuracy with truncated samples,and it is robust to a certain level data missing.
出处 《振动与冲击》 EI CSCD 北大核心 2017年第23期10-16,共7页 Journal of Vibration and Shock
基金 国家自然科学基金(51275546 51375514) 中央高校基本科研业务费(106112016CDJZR288803)
关键词 寿命预测 失效样本 截尾样本 函数型主成分分析 轴承 life prediction failure sample truncated sample function principal component analysis bearing
  • 相关文献

参考文献3

二级参考文献48

  • 1张星辉,康建设,高存明,曹端超,滕红智.基于MoG-HMM的齿轮箱状态识别与剩余使用寿命预测研究[J].振动与冲击,2013,32(15):20-25. 被引量:14
  • 2奚立峰,黄润青,李兴林,刘中鸿,李杰.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143. 被引量:56
  • 3SHAO Y,NEZU K. Prognosis of remaining bearing life using neural networks[J].Journal of Systems and Control Engineering,2000,(13):217-230.
  • 4GEBRAEEL N,LAWLEY M,LIU R. Residual life predictions from vibration-based degradation signals:A neral network approach[J].IEEE Tran on Induxttrial Electronics,2004,(03):694-700.
  • 5HUANG Runqing,XI Lifeng,LI Xinglin. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J].Mechanical Systems and Signal Processing,2007.193-207.
  • 6PAN Yuna,CHEN Jin,LI Xinglin. Spectral entropy:A complementary index for rolling element bearing performance degradation assessment[J].Journal of Mechanical Engineering System,2009.1223-1231.
  • 7ZARETSKY E V,POPLAWSKI J V,PETERS S M. Comparision of life theories for rolling element bearing[J].Tribology Transactions,1996,(02):237-248.
  • 8LI Y,BILLIGTON S,ZHANG C. Adaptive prognostics for rolling element bearing condition[J].Mechanical Systems and Signal Processing,1999,(01):103-113.
  • 9VAPNIK V N. Statistical learning theory[M].New York:wiley,1998.
  • 10MIN Sunghwan,LEE Jumin,HAN Ingoo. Hybrid genetic algorithms and support vector machines for bankruptcy prediction[J].Expert Systems with Applications,2006,(03):652-660.

共引文献173

同被引文献125

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部