期刊文献+

基于高双折射光子晶体光纤和无限脉冲响应的微波光子滤波器 被引量:3

A Tunable and Reconfigurable of Microwave Photonic Filter Based on HB-PCF and Infinite Impulse Response
原文传递
导出
摘要 提出了1种基于高双折射光子晶体光纤和无限脉冲响应(IIR)的可调谐可重构微波光子滤波器(MPF).向高双折射光子晶体光纤(HB-PCF)的1个大空气孔中填充温敏液体,调节温度,改变HB-PCF的双折射,使激光器产生不同波长间隔的激光,从而使滤波器具有不同的自由频谱范围(FSR),实现了滤波器的连续可调谐.当温度的变化范围为20-80℃时,仿真测得,FSR的变化范围为12.145-23.277 GHz.在有限脉冲响应(FIR)滤波器中引入电反馈,构成IIR滤波器,使得MPF的3 d B带宽减小,主旁瓣抑制比(MSSR)增加,其通带特性得到了改善.通过调节射频信号放大器的增益,可以改变滤波器的频率响应形状,实现滤波器的可重构特性. A tunable and reconfigurable of microwave photonic filter(MPF) based on HB-PCF and infinite impulse response(IIR) is proposed. One of a big air hole of HB-PCF filling with temperature-sensitive liquid, adjusting temperature could change the birefringence of HB-PCF, then the laser produces lasing with different wavelength space, the filter will obtain different free spectral range(FSR), implementing the continuality tenability. When the temperature range is 20-80℃, the stimulated result shows that the FSR range is 12.145-23.277 GHz. An electrical feedback infinite impulse response(IIR) filter is introduced, based on a finite impulse response(FIR) filter. Thus the 3 d B bandwidth is reduced, and the main side-lobe suppression ratio(MSSR) is increased, and the passband characteristic is improved. By adjusting the gain of the RF signal amplifier, the frequency response of the filter can be changed, and the reconfigurability of the filter can be realized.
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第6期16-20,共5页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 国家863项目(2013AA014200) 国家自然科学基金应急管理项目(11444001) 天津市自然科学基金(14JCYBJ C16500)
关键词 高双折射光子晶体光纤 无限脉冲响应 微波光子滤波器 可调谐 可重构 high birefringence photonic crystal fiber infinite impulse response microwave photonic filter tunable reconfigurability
  • 相关文献

参考文献3

二级参考文献29

  • 1刘丽辉,赵启大,周广,张昊,陈少华,冯新焕,董孝义.双折射光纤环形镜滤波器特性研究[J].光学学报,2004,24(9):1185-1188. 被引量:12
  • 2Javier Abreu-Afonso, Antonio Díez, Jose Luis Cruz, et al.. Continuously tunable microwave photonic filter using a multiwavelength fiber laser[J]. IEEE Photon Technol Lett, 2012, 24(23): 2129-2131.
  • 3John Chang, Mable P Fok, James Meister, et al.. A single source microwave photonic filter using a novel single-mode fiber to multimode fiber coupling technique[J]. Opt Express, 2013, 21(5): 5585-5593.
  • 4Yuan Yu, Jianji Dong, Xiang Li, et al.. All optical microwave photonic filter with bandpass and notch filtering shapes[C]. SPIE, 2010, 7988: 79881Z.
  • 5L N Zhou, Y J Cheng, E M Xu. Coherence-free cascade IIR microwave photonic filter with high Q factor[J]. Electron Lett, 2011, 47(13): 754-755.
  • 6Enming Xu, Fei Wang, Lipei Li, et al.. Cascaded microwave photonic filters with multiple infinite impulse responses based on wavelength conversion[C]. Communications and Photonics Conference and Exhibition, 2011. 1-6.
  • 7Kun Zhu, Haiyan Ou, Hongyan Fu, et al.. A simple and tunable single-bandpass microwave photonic filter of adjustable shape[J]. IEEE Photon Technol Lett, 2008, 20(23): 1917-1919.
  • 8B Ortega, J Mora, D Capmany, et al.. Highly selective microwave photonic filters based on active optical recirculating cavity and tuned modulator hybrid structure[J]. Electron Lett, 2005, 41(20): 1133-1135.
  • 9CAPMANY J,ORTEGA B,PASTOR D.A tutorial on microwave photonic filters[J].Journal of Lightwave Technology,2006,24(1):201-229.
  • 10MINASIAN R A.Photonic signal processing of microwave signals[J].IEEE Transactions on.Microwave.Theory and Techniques,2006,54(2):832-846.

共引文献12

同被引文献31

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部