期刊文献+

具有执行器容错的汽车主动悬架系统有限频率H∞控制 被引量:7

Finite frequency H-infinity control for active vehicle suspension systems subject to actuator faults
下载PDF
导出
摘要 本文研究了一类具有执行器容错的主动悬架系统有限频率H_∞控制问题.运用广义的Kalman-Yakubovich-Popov(KYP)引理,设计了有限频率H_∞控制器.该控制器不仅能够最大程度地减少路面在4~8 Hz范围内对乘客的影响,还能够保证汽车的悬架行程和车轮的动静载之比在它们允许的范围内.因此所设计的有限频率H_∞控制器不仅能够保证汽车驾驶的舒适性还能够保证汽车驾驶的安全性.为了解决系统状态不完全可测的问题,本文采用了动态输出反馈控制器策略.除此之外,在控制器的设计过程中还考虑了主动悬架系统的参数不确定性以及执行器随机故障的现象.最后,本文基于四分之一汽车主动悬架系统验证了控制器的有效性. This paper addresses the problem of infinite frequency H-infinity control for active vehicle suspension systems with actuator faults. The generalized Kalman-Yakubovich-Popov(KYP) lemma is used to develop an H-infinity controller in specific frequency. The designed infinite frequency H-infinity controller not only can minimize the disturbances from road influencing passengers, but also can guarantee the vehicle suspension deflections and relation dynamic tire load in their allow scopes. It can be concluded that the designed infinite frequency H-infinity controller not only obtains passengers ride comfort, but also guarantees the constraints of active vehicle suspension systems. The dynamic output-feedback control approach is used to deal with the problem, which system states are not measured completely. Additionally, the characteristic of uncertain parameters and actuator faults are considered in controller design process. Finally, based on the quarter-vehicle active suspension system, simulations are presented to demonstrate the effectiveness of the designed controller in time and frequency domains.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第9期1136-1142,共7页 Control Theory & Applications
基金 国家自然科学基金项目(61673178,91420103,61573260) 上海市自然科学基金项目(17ZR1445800) 中央高校基本业务费项目资助~~
关键词 汽车主动悬架系统 广义Kalman-Yakubovich-Popov(KYP)引理 有限频域H∞控制器 动态输出反馈控制方法 执行器容错 active suspension systems the generalized Kalman-Yakubovich-Popov(KYP) lemma finite frequency H-infinity controller dynamic output-feedback control approach actuator faults
  • 相关文献

参考文献2

二级参考文献9

  • 1GASPAR P.Model-based H2/H∞ control design for uncertain dynamic system [J].IEEE Trans on Automatic Control,1999,56(3):353-359.
  • 2YAMASHITA M, FUJIMORI K, HAYAKAWA K, et al. Application of H∞ control to active suspension systems[J]. Automatica, 1994,30(11): 1717 - 1729.
  • 3WANG J, XU W, CHEN W. Optimal Hankel-norm reduction of active suspension model with application in suspension multiobjective control[J]. Int J of Vehicle Design, 2006, 40(1/2/3): 175 - 195.
  • 4AMIRIFAR R. A low-order controller design for an active suspension system via linear matrix inequalities[J]. J of Vibration and Control,2004, 10(8): 1181 - 1197.
  • 5IKENAGA S, LEWIS F L, CAMPOS J, et al. Active suspension control of ground vehicle based on a full-vehicle model[C]//Proc of American Control Conference. Chicago, Illinois: IEEE Press, 2000:4019 - 4024.
  • 6DAVE C,喻凡.车辆动力学及其控制[M]北京:人民交通出版社,2003:74-101.
  • 7WANG J. Generalized multi-objective control with applications to vehicle suspension systems[D]. Leeds, UK: University of Leeds, 2003.
  • 8KEITH G. All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error bounds[J]. Int J Control, 1984,39(6): 1115- 1193.
  • 9GREEN M, LIMEBEER D J N. Linear Robust Control[M]. USA:Prentice-Hall, Inc, 1995.

共引文献48

同被引文献33

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部