期刊文献+

NO reduction using low-temperature SCR assisted by a DBD method 被引量:1

NO reduction using low-temperature SCR assisted by a DBD method
下载PDF
导出
摘要 This paper discusses the removal of nitric oxide (NO) with low-temperature selective catalytic reduction driven by a dielectric barrier discharge with ammonia (NH3) as a reductant. We explored the effects of NH3, O2, temperature and water under different applied voltage on NO removal at atmospheric pressure. The results showed that when the gas concentration ration of NH3/NO was 0.23-0.67, the NO removal efficiency and the energy consumption was acceptable. The NO removal efficiency reached 84% under an applied voltage of 7 kV, 400 ppm NO and 90 ppm NH3 at a temperature of 150 ℃. Water vapor had a negative effect because NO formation reactions were strengthened and NH3 was oxidized directly rather than reduced NO molecules. The outlet gas components were observed via Fourier transform infrared spectroscopy for revealing the decomposition process and mechanism. This paper discusses the removal of nitric oxide (NO) with low-temperature selective catalytic reduction driven by a dielectric barrier discharge with ammonia (NH3) as a reductant. We explored the effects of NH3, O2, temperature and water under different applied voltage on NO removal at atmospheric pressure. The results showed that when the gas concentration ration of NH3/NO was 0.23-0.67, the NO removal efficiency and the energy consumption was acceptable. The NO removal efficiency reached 84% under an applied voltage of 7 kV, 400 ppm NO and 90 ppm NH3 at a temperature of 150 ℃. Water vapor had a negative effect because NO formation reactions were strengthened and NH3 was oxidized directly rather than reduced NO molecules. The outlet gas components were observed via Fourier transform infrared spectroscopy for revealing the decomposition process and mechanism.
出处 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第1期8-15,共8页 等离子体科学和技术(英文版)
基金 financial support for this research was provided by National Natural Science Foundation of China (No. 21577023) the Key Project supported by the Science and Technology Commission of Shanghai Municipality (No. 15DZ1205904) Technology Innovation and Energy Saving Enhancement Project supported by Shanghai SASAC (No. 2013019)
关键词 dielectric barrier discharge NO NH3 SCR dielectric barrier discharge, NO, NH3, SCR
  • 相关文献

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部