期刊文献+

Non-trivially Graded Self-dual Fusion Categories of Rank 4 被引量:1

Non-trivially Graded Self-dual Fusion Categories of Rank 4
原文传递
导出
摘要 Let C be a self-dual spherical fusion categories of rank 4 with non-trivial grading. We complete the classification of Grothendieck ring K(C) of C; that is, we prove that K(C) = Fib Z[Z2], where Fib is the Fibonacci fusion ring and Z[Z2] is the group ring on Z2. In particular, if C is braided, then it is equivalent to Fib Vecwz2 as fusion categories, where Fib is a Fibonacci category and Vecwz2 is a rank 2 pointed fusion category. Let C be a self-dual spherical fusion categories of rank 4 with non-trivial grading. We complete the classification of Grothendieck ring K(C) of C; that is, we prove that K(C) = Fib Z[Z2], where Fib is the Fibonacci fusion ring and Z[Z2] is the group ring on Z2. In particular, if C is braided, then it is equivalent to Fib Vecwz2 as fusion categories, where Fib is a Fibonacci category and Vecwz2 is a rank 2 pointed fusion category.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第2期275-287,共13页 数学学报(英文版)
基金 Supported by the Fundamental Research Funds for the Central Universities(Grant No.KYZ201564) the Natural Science Foundation of China(Grant Nos.11571173,11201231) the Qing Lan Project
关键词 Fusion categories universal grading small rank Frobenius-Perron dimension Fusion categories, universal grading, small rank, Frobenius-Perron dimension
  • 相关文献

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部