摘要
Consider the two-dimensional, incompressible Navier-Stokes equations on torus T^2= [-π, π]^2 driven by a degenerate multiplicative noise in the vorticity formulation(abbreviated as SNS): dwt = ν?w_tdt +B(Kw_t, w_t)dt + Q(w_t)dW t. We prove that the solution to SNS is continuous differentiable in initial value. We use the Malliavin calculus to prove that the semigroup{P_t}_t≥0 generated by the SNS is asymptotically strong Feller. Moreover, we use the coupling method to prove that the solution to SNS has a weak form of irreducibility.Under almost the same Hypotheses as that given by Odasso, Prob. Theory Related Fields, 140: 41–82(2005)with a different method, we get an exponential ergodicity under a stronger norm.
Consider the two-dimensional, incompressible Navier-Stokes equations on torus T^2= [-π, π]^2 driven by a degenerate multiplicative noise in the vorticity formulation(abbreviated as SNS): dwt = ν?w_tdt +B(Kw_t, w_t)dt + Q(w_t)dW t. We prove that the solution to SNS is continuous differentiable in initial value. We use the Malliavin calculus to prove that the semigroup{P_t}_t≥0 generated by the SNS is asymptotically strong Feller. Moreover, we use the coupling method to prove that the solution to SNS has a weak form of irreducibility.Under almost the same Hypotheses as that given by Odasso, Prob. Theory Related Fields, 140: 41–82(2005)with a different method, we get an exponential ergodicity under a stronger norm.
基金
supported by the National Natural Science Foundation of China(No.11371041,11431014)
the Key Laboratory of Random Complex Structures and Data Science,Academy of Mathematics and Systems Science,Chinese Academy of Sciences(No.2008DP173182)
supported by NSFC(No.11501195)
a Scientific Research Fund of Hunan Provincial Education Department(No.17C0953)
the Youth Scientific Research Fund of Hunan Normal University(No.Math140650)
the Construct Program of the Key Discipline in Hunan Province