期刊文献+

多变量Hammerstein-Wiener模型的参数辨识 被引量:3

Parameter Identification of Multivariate Hammerstein-Wiener Model
下载PDF
导出
摘要 为了突破现存Hammerstein-Wiener模型参数辨识方法中假设输出非线性块可逆的限定条件,基于可分非线性最小二乘算法,提出由多个单变量Hammerstein子模型和一个多变量输出非线性块组成的多变量Hammerstein-Wiener模型的参数辨识方法.首先,以输出误差最小为准则使用Levenberg-Marquardt法辨识出输出非线性块和Hammerstein子模型的两个参数集.其次,对Hammerstein子模型使用基于张量积的奇异值分解,辨识出输入非线性块与中间线性块的参数.再次,理论分析了所提辨识方法的辨识收敛性.最后,通过仿真验证此法的有效性. In order to break the limited condition that the output nonlinear blocks are reversible in existing Hammerstein-Wiener model parameter identification methods, a new parameter identification method of multivariate Hammerstein-Wiener model was proposed based on separable nonlinear least square algorithm. The model was comprised of multiple univariate Hammerstein submodels and one multivariate nonlinear block. First, two parameter sets were identified for output nonlinear block and Hammerstein submodels using Levenberg-Marquardt algorithm under the minimum output error criterion. Second, parameters of input nonlinear block and middle linear block were identified by singular value decomposition (SVD) of tensor product from Hammerstein submodels. Then, the identification convergence was theoretically analyzed. Finally,simulation results showed the effectiveness of the proposed method.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第1期6-10,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61473072) 吉林省科技发展计划项目(20160312017ZX 20170312031ZG)
关键词 多变量 非线性模型 HAMMERSTEIN-WIENER模型 可分非线性最小二乘 奇异值分解 收敛性 multivariate nonlinear model Hammerstein-Wiener model separable nonlinear least square SVD (singular value decomposition) convergence
  • 相关文献

参考文献1

二级参考文献18

  • 1向微,陈宗海.基于Hammerstein模型描述的非线性系统辨识新方法[J].控制理论与应用,2007,24(1):143-147. 被引量:25
  • 2杨慧中,张勇.Box-Jenkins模型偏差补偿方法与其他辨识方法的比较[J].控制理论与应用,2007,24(2):215-222. 被引量:13
  • 3Tan A H, Godfrey K. Identification of Wiener-Hammerstein models using linear interpolation in the frequency domain (LIFRED). IEEE Transactions on Instrumentation and Measurement, 2002, 51(3): 509-521.
  • 4Liu Y, Bai E W. Iterative identification of Hammerstein systems. Automatica, 2007, 43(2): 346-354.
  • 5Ding F, Chen T W. Identification of Hammerstein nonlinear ARMAX systems. Automatica, 2005, 41(9): 1479-1489.
  • 6Ding F, Shi Y, Chen T W. Gradient-based identification methods for Hammerstein nonlinear ARMAX models. Nonlinear Dynamics, 2006, 45(1-2): 31--43.
  • 7Ding F, Shi Y, Chen T W. Auxiliary model based leastsquares identification methods for Hammerstein outputerror systems. Systems and Control Letters, 2007, 56(5): 373-380.
  • 8Ding F, Chen T W. Combined parameter and output estimation of dual-rate systems using an auxiliary model. Automatica, 2004, 40(10): 1739-1748.
  • 9Ding F, Chen T W. Identification of dual-rate systems based on finite impulse response models. International Journal of Adaptive Control and Signal Processing, 2004, 18(7): 589-598.
  • 10Bai E W. An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica, 1998, 34(3): 333--338.

共引文献12

同被引文献27

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部