期刊文献+

基于动态组稀疏重构的频谱感知算法 被引量:4

Spectrum Sensing Algorithm Based on Dynamic Group Sparsity Reconstruction
下载PDF
导出
摘要 针对认知无线电网络中宽带频谱感知问题,提出了一种基于主用户信号频谱结构的频谱感知算法,简称为DGS-SS算法.该算法首先利用压缩感知理论对信号进行欠采样,然后利用主用户信号频谱的组稀疏结构修正重构过程中的频谱和残差支撑集,从而能够加快重构主用户信号频谱的收敛速度,而且也能够提高主用户信号频谱的重构精度,最后利用重构信号频谱给出频谱空穴的有效检测.仿真结果表明,所提算法不仅能在低压缩比下精确重建信号频谱,而且对噪声变化具有更强的鲁棒性,从而有效地提高了频谱感知性能. To solve the problem of wideband spectrum sensing in cognitive radio networks,a spectrum sensing algorithm based on the spectrum structure of primary user signals was proposed, which is called DGS-SS algorithm. Firstly, compressed sensing theory was applied to signal acquisition to achieve a sub-Nyquist rate. Secondly, the group sparsity structure of primary user spectrum was used to modify the spectrum and residual support set during the reconstruction process, which can speed up the convergence and improve the accuracy of the reconstruction of primary user spectrum. Finally, effective detection of spectrum holes was given by the reconstructed signal spectrum. Simulation results show that the proposed algorithm can accurately reconstruct the spectrum at low compression ratio and have stronger robustness to noise variation, which makes the spectrum sensing performance significantly improved.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第1期31-34,共4页 Journal of Northeastern University(Natural Science)
基金 新世纪优秀人才支持计划项目(NCET-13-0105) 河北省高校百名优秀创新人才支持计划项目(BR2-259) 河北省自然科学基金资助项目(F2016501139) 中国高等教育博士研究生专项科研基金资助项目(20130042110003) 中央高校基本科研业务费专项资金资助项目(N142302001)
关键词 认知无线电 频谱感知 压缩感知 动态组稀疏 主用户信号重构 cognitive radio spectrum sensing compressed sensing dynamic group sparsity primary user signal reconstruction
  • 相关文献

参考文献1

二级参考文献10

  • 1Pun M O, Morelli M, Jay K C C. Maximum likelihood synchronization and channel estimation for OFDMA uplink transmissions[J]. IEEE Transactions on Communications, 2006,54(4):726-736.
  • 2Sezginer S, Bianchi P. Asymptotically efficient reduced complexity frequency offset and channel estimators for uplink MIMO-OFDMA systems[J]. IEEE Transactions on Signal Processing, 2008,56(3) :964 - 979.
  • 3Sun P F, Zhang L. A simple iterative carrier frequency synchronization technique for OFDMA uplink transmissions [J ]. Wireless Communications and Mobile Computing, 2011,11(1):121 - 128.
  • 4Cao Z R, Tureli U, Yao Y D. Deterministic multiuser carrier frequency offset estimation for interleaved OFDMA uplink [J ]. IEEE Transactions on Communications, 2004,52 (9) : 1585 - 1594.
  • 5Lee J, Lee S, Bang K J. Carrier frequency offset estimation using ESPRIT for interleaved OFDMA uplink systems[J ]. IEEE Transactions on Vehicular Technology, 2007,56 (5) : 3227 - 3231.
  • 6Du R Y, Wang J K, Shan L Q, et al. CFO matrix methodand performance analysis for carrier frequency offset estimation in OFDMA uplink [ J ]. ICIC Express Letters, 2011,5(4) :1137- 1144.
  • 7Hsieh H T, Wu W R. Blind maximum-likelihood carrier- frequency-offset estimation for interleaved OFDMA uplink systems[J]. IEEE Transactions on Vehicular Technology, 2011,60(1) :160 - 173.
  • 8Donoho D. Compressed sensing [ J ]. IEEE Transactions on Information Theory, 2006,52(4) : 1289 - 1306.
  • 9Berger C R, Zhou S L, Preisig J C, et al. Sparse channel estimation ifor multicarrier underwater acoustic communication: from subspace methods to compressed sensing[J]. IEEE Transactions on Signal Processing, 2010, 58(3) : 1708 - 1721.
  • 10Grant M, Boyd S. CVX: Matlab software for disciplined convex programming[ EB/OL ]. (2009 - 06 - 15 ). http :// stanford, edu/--boyd/cvx/download, html.

共引文献1

同被引文献22

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部