摘要
为了解决Hammerstein非线性系统在非均匀采样条件下的辨识问题,该文提出了1种能够用于在线参数估计的梯度迭代算法。通过引入时变后移算子,推导了非均匀采样Hammerstein系统的离散时间模型。采用关键项分离技术将系统参数化为1个线性回归模型。基于辅助模型辨识思想对未知中间变量进行重构,并利用负梯度搜索原理获得模型参数的迭代估计。仿真结果表明,该文方法是有效的,且比辅助模型随机梯度算法具有更快的收敛速度,参数估计精度提高近40倍。
A gradient based iterative algorithm for online parameter estimation is proposed to solve the identification problem of Hammerstein nonlinear systems with non-uniform sampling. A discretetime model of non-uniformly sampled Hammerstein systems is derived by introducing a time-varying backward shift operator.The system is parameterized into a linear regression model by applying the key-term separation technique. The unknown intermediate variables are reconstructed based on the auxiliary model identification idea,and the iterative estimates of model parameters are obtainedthrough the negative gradient search principle. The simulation results indicate that,the proposed method is effective and has a faster convergence rate than the auxiliary model based stochastic gradient algorithm,and the estimation accuracy is improved by nearly 40 times.
出处
《南京理工大学学报》
EI
CAS
CSCD
北大核心
2017年第6期738-747,共10页
Journal of Nanjing University of Science and Technology
基金
国家自然科学基金(61403166
61773181)
江苏省自然科学基金(BK20140164)
中央高校基本科研业务费专项资金(JUSRP11561
JUSRP51510)
关键词
非均匀采样
HAMMERSTEIN模型
梯度迭代算法
参数辨识
关键项分离技术
负梯度搜索原理
non-uniform sampling
Hammerstein model
gradient based iterative algorithm
parameter identification
key-term separation technique
negative gradient search principle