摘要
通过对壁挂式充电桩感性意象与形态设计要素的分析,建立两者间对应的BP神经网络设计模型,从而得到各感性意象对应的产品形态。利用感性工学中的李克特量法对收集到的壁挂式充电桩形态样本和感性词汇进行设计评价并得到感性评价结果,将形态设计要素作为BP神经网络模型的输入层参数,感性评价结果数值作为输出层参数,利用Matlab软件进行壁挂式充电桩BP神经网络模型的反复训练和测试,最终得到壁挂式充电桩形态设计要素BP神经网络模型。最后通过MSE度量该BP神经网络模型准确性,研究表明建立的壁挂式充电桩感性意象和形态设计要素间的BP神经网络模型具有可行性。
By analyzing the sentimental images and elements of form of wall set charging pile, a BP neural network design model is established between them. Use the method of Likert scale to evaluate the form samples and sentimental words of wall set charging pile, calculate the matrix of sentimental evaluation. Then encode the elements of form and input them into the BP neural network as input parameters, normalize the data of matrix of sentimental evaluation as the output parameters. Finally train and test the BP neural network of wall set charging pile by Matlab and establish the mapping relation between elements of form and sentimental images. The BP neural network model of wall set charging pile was obtained. The accuracy of BP neural network model is measured by the function of mean square error. The results show that the BP neural network model between the sentimental images and the elements of form of the wall set charging pile is feasible.
出处
《图学学报》
CSCD
北大核心
2017年第6期865-868,共4页
Journal of Graphics
基金
国家自然科学基金项目(51675464)
关键词
感性工学
BP神经网络
壁挂式充电桩
造型设计
kansei engineering
BP neural network
wall set charging pile
modality design elements