期刊文献+

基于贝叶斯网络的海上交通安全 被引量:6

Bayesian Network Modeling in Maritime Safety
下载PDF
导出
摘要 利用Logistic回归和贝叶斯网络模型,研究发达国家和发展中国家船舶尺度、船龄、船旗、船型及港口监控对船舶事故的影响,挖掘当前海上交通安全管理中存在的问题。通过Logistic回归计算各因素对船舶事故、检查次数和滞留情况影响的条件概率,并构建船舶事故的贝叶斯网络模型。在探讨各因素在不同状态下对各类事故的影响程度的同时,发现发生事故的船舶多为被港口国重点监控的船舶。这在一定程度上说明当前各谅解备忘录(Memorandum of Understanding,Mo U)制定的船舶检查制度在筛选危险船舶方面具有一定的有效性,但因缺乏一定的惩罚力度,未能从根本上降低船舶事故发生率。因此,建议加强各港口国监控数据的共享,建立一套完善的港口监控及惩罚机制,以有效保证航运安全,敦促船舶所有人提高船舶质量、改善全球海上运输安全。 This study tries to investigate how ship accidents are related to the status of the ship size,the ship age,the ship flag,the ship type and the PSC inspection both in developed and developing countries using Logistic regression and Bayesian network model. This could help discover the problems existing in current maritime safety management. By combing different data from various sources,the conditional probabilities of accidents and inspection and detention under different conditions are calculated using Logistic regression and builds the Bayesian network. Through empirical analysis,the impacts of various factors on different accidents are investigated. The results show that accident ships are usually those ships chosen to inspect by port States. This suggests the effectiveness of current selecting mechanisms of ship inspection defined by the Mo U( Memorandum of Understanding). However,it fails to reduce ship accidents thoroughly because of the lack of penalties. It is significant to enhance data sharing among port States and establish a systematic inspection and penalty system which will urge shipowners to improve ship quality and improve the safety of global maritime transportation effectively.
出处 《中国航海》 CSCD 北大核心 2017年第4期61-65,85,共6页 Navigation of China
基金 国家自然科学基金(71673181) 上海市浦江人才计划项目(14PJC070)
关键词 海上交通事故 航运安全 贝叶斯网络 逻辑回归 maritime accident maritime safety Bayesian network logistic regression
  • 相关文献

二级参考文献30

  • 1PMI. A guide to the project management body of knowledge: PMBOK Guide. 3rd ed [M]. USA: Project Management Institute Inc. 2004.
  • 2AKINTOYE,A. S. Risk analysis and management in construction [ J]. International Journal of Project Management, 1997, 15(1) : 31 -38.
  • 3ZOU P. X. W. , ZHANG G. , WANG J. Understanding the key risks in construction project in China [ J]. International Journal of Project Management, 2007,25(6) : 601 -614.
  • 4ZOU P. X. W. , ZHANG G. , WANG J. Identifying key risks in construction projects: life cycle and stake holder perspectives [J]. In: Proc. 12th Pacific rim real estate society conference, Auckland, New Zealand 2006, ( 1 ) : 22 - 25.
  • 5CANA D. , CRUZ D.A. Integrated methodology for project risk management [ J]. Journal of Construction Engineering and Management, 2002, 128(6) : 473 -485.
  • 6LUU V. T. , KIM S. Y. , TUAN N. V. , et al. Qualitifying schedule risk in construction project using Bayses in belief networks [ J ]. International Journal of Project Management, 2009,27(1) : 39 -50.
  • 7LEE E. , PARK Y. , SHIN J. G. Large engineering project risk management using a Bayesian belief network [ J ]. Expert Systems with Applications, 2009,36 (3) :5880 -5887.
  • 8HECKERMAN D. Bayesian networks for data mining [ J]. Data Mining and Knowledge Discovery 1997, 1 (1) : 79 -119.
  • 9UUSITALO L. Advantages and challenges of Bayesian net works in environmental modeling [ J ]. Ecological Mdeling, 2007, 203(3/4): 312 -318.
  • 10VIVIAN W. Y. TAMA, L. Y. SHEN, C. M. TAM, WILLY W. S. PANG. Investigating the intentional quality risks in public foundation projects: A Hong Kong study [ J ]. Building and Environment, 2007, 42( 1 ) :330 -343.

共引文献55

同被引文献33

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部