期刊文献+

表面三维结构构造对磷酸铁锂电化学性能的影响 被引量:3

Construction of three-dimensional conductive network and its electrochemical properties of lithium iron phosphate
下载PDF
导出
摘要 电子产品的普及对锂离子电池商业正极材料磷酸铁锂的倍率充放电能力和循环稳定性提出了更高的要求。石墨烯由于其独特的电子共轭态和单原子层结构,具有优越的电子迁移性、大的比表面积和良好的热与化学稳定性,是理想的磷酸铁锂表面结构和功能修饰材料。本文将结合传统材料表面金属包覆的方法,在化学还原氧化石墨烯包覆过程中引入二价金属离子,在磷酸铁锂表面形成三维导电网络的化学还原氧化石墨烯/金属包覆层。实验结果表明,表面三维结构的构造可显著地改善磷酸铁锂的导电性和锂离子扩散性能。 It is challenging to develop lithium iron phosphate( LiFePO4) possessing simultaneously high rate capability and good cycling stability as lithium ion batteries cathode materials. Graphene sheets,have superior electronic mobility,large surface area,and decent thermal and chemical stability,owing to the unique electronic conjugate state and the single atomic layered morphology,and is considered as the promising material for surface functional modification of LiFePO4. In this work,based on traditional method of surface metal coating,bivalent metal ion is introduced in the process of chemical reduced graphene oxide coating,forming the three-dimensional conducting network of chemical reduced graphene oxide/metal coating layer on the surface of LiFePO4. The results show that the surface three-dimensional structure can improve the conductivity and the diffusion properties of LiFePO4.
出处 《燕山大学学报》 CAS 北大核心 2017年第6期545-549,共5页 Journal of Yanshan University
基金 国家自然科学基金资助项目(11374205) 中国博士后基金资助项目(2014M551409)
关键词 锂离子电池 磷酸铁锂 石墨烯/金属 倍率充放电性能 循环稳定性 lithium ion battery lithium iron phosphate graphene/metal charge/discharge rate properties cycling stability
  • 相关文献

参考文献3

二级参考文献29

  • 1Padhi A K, Nanjundaswamy K S, Goodenough J B. Phosphoolivines as positive-electrode materials for rechargeable lithium batteries[J].J Electrochem Soc, 1997, 144(4): 1188-1194.
  • 2Liu Z L, Wang H B, Fang L, et al. Improving the high-temperature performance of LiMn2O4 spinel by micro-emulsion coating of LiCoO9 [J]. J Power Sources, 2002, 104( 1 ) : 101-107.
  • 3Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes[J].J Electrochem Soc, 2001, 148 ( 3 ) : A224-A229.
  • 4Andersson S, Kalska B,Haggstrom L, et al. Thomas. Lithium extraction/insertion in LiFePO4 : an X-ray diffraction and Mossbauer spectroscopy study[J].Solid State Ionics, 2000, 130( 1- 2) : 41-52.
  • 5Takahashi M, Tobishima S, Takei K, et al. Characterization of LiFePO4 as cathode material for rechargeable lithium battery[J]. J Power Sources, 2001, 97-98: 508-511.
  • 6Takahashi M, Tobishima S, Takei K, et al. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries [J]. Solid State Ionics, 2002, 148(3-4) : 283-289.
  • 7Croce F, Epifanio A D, Hassoun J, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode[J]. Electrochemical and Solid State Letters, 2002, 5 (3): A47-A50.
  • 8Abbate M, Lala S M, Montoro L A, et al. Ti-, Al-, and Cudoping induced gap states in LiFePO4 [ J ]. Electrochem Solid- State Lett, 2005. 8 (6) : A288-A290.
  • 9Wang D Y, Wang Z X, Huang X J, .et al. Continuous solid solutions LiFe1-x Cox PO4 and its electrochemical performance[J]. J Power Sources, 2005, 146: 580-583.
  • 10Wang G X, Needham S, Yao J, et al. A study on LiFePO4 and its doped derivatives as cathode materials for lithium-ion batteries[J]. J Power Sources, 2006, 159: 282-286.

共引文献5

同被引文献14

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部