期刊文献+

融合“用户-项目-用户兴趣标签图”的协同好友推荐算法 被引量:13

Combining User-Item-Tag Tripartite Graph and Users Personal Interests for Friends Recommendation
下载PDF
导出
摘要 随着社交网络的用户数量呈爆炸式增长,如何为用户推荐具有相同兴趣爱好的好友已成为当前研究的焦点。为此,提出了一种基于"用户-项目-用户兴趣标签图"的协同好友推荐算法。该算法首先利用基于"用户-项目-标签"的三部图物质扩散推荐算法来计算用户之间的相似度,并引入"用户-用户兴趣标签图"二元关系,通过用户的兴趣标签图来发掘用户的兴趣主题;然后根据用户主题分布,利用KL距离来计算用户之间的相似度;最后将两组结果采用调和平均数方式融合得到用户间的综合相似度,并进行好友的推荐。通过在Delicious和Last.fm数据集上的实验证明,该算法能有效提高Top-N推荐的准确率和召回率,同时通过在学术社交网站——学者网数据集上进行的学者推荐实验表明,该算法能有效提高核心用户的推荐度。 As the exponential growth of the number of users in social networks, how to recommend friends with similar interests from massive users has become one of the research focuses in social recommendation. This paper proposes a hybrid friend recommendation algorithm based on user-item-tag graph and users personal interests. Firstly,the similarities between users are calculated by mass diffusion method in tripartite graph. Secondly, the relationship between users and tag graph of users is introduced, and the communities in the tag graphs of users are detected for the topics of users interests. Then the similarities between users are measured by Kullback-Leibler divergence according to their topics distributions. Finally, two kinds of similarities are integrated for user recommendation bythe harmonic mean method. The experimental results on Delicious and Last.fm datasets demonstrate that the proposed algorithm can effectively improve the accuracy of Top-N recommendation in terms of precision and recall. At the same time, the experimental results on the academic social network site—SCHOLAT for the scholar recommendation prove that the proposed algorithm improves the recommendation of core network members.
出处 《计算机科学与探索》 CSCD 北大核心 2018年第1期92-100,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金Nos.61272067 61502180 61370178 61202296 61370229 国家高技术研究发展计划(863计划)No.2013AA01A212 广东省自然科学基金Nos.2015A030310509 2014A030310238 广州市科技计划No.201508010067~~
关键词 好友推荐 三部图 标签 社交网络 协同推荐 friend recommendation tripartite graph tag social network collaborative filtering
  • 相关文献

参考文献1

二级参考文献19

  • 1Li X,Lei G, Zhao Y E. Tag-based social interest discovery. Proceedings of the 17 International Conference on World Wide Web. Beijing, China, 2008:6754684.
  • 2Illig J, Andreas H, Robert J, et al. A comparison of content-based tag recommendations in Folksonomy systems. Knowledge Processing and Data Analysis,2011,6581 : 136-149.
  • 3Cai Y, Li Q. Personalized search by tag-based user profile .and resource profile in collaborative tagging systems. Proceedings of the 19th ACM International Conference on Information and Knowledge Management. Toronto, Ontario, Canada, 2010 : 969 - 978.
  • 4Tao Z W, Hu J, He W, et al. Modeling user's preference in Folksonomy for personalized search. Proceedings of the 2011 International Conference on Cloud and Service Computing, Beijing, China, 2011:55-59.
  • 5Girvan M, Mark E J N. Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 2002, 99 (12): 7821-7826.
  • 6Newman, Mark E J, Girvan M. Finding and evaluating community structure in networks. Physical Review E,2004,69(2):1-16.
  • 7Palla G. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005,435 (7043) : 814 - 818.
  • 8He F G, Zhang Y P, Zhang L. Community partition method for network based on granularity. Journal of Nanjing University (Natural Sciences), 2010,46 (5) : 511- 519.
  • 9Cheng X Q, Shen H W. Community analysis in social information network. Communication of the CCF,2011,7(12) :12420.
  • 10Michlmayr E, Steve C. Learning user profiles from tagging data and leveraging them for personal(ized) information access. Workshop on Tagging and Metadata for Social Information Or- ganization. Banff, Canada, 2007 : 1 - 8.

共引文献4

同被引文献89

引证文献13

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部