期刊文献+

蝙蝠算法的一种改进方法 被引量:4

An improved method for bat algorithm
下载PDF
导出
摘要 针对蝙蝠算法在进行局部搜索时,易使算法陷入局部极值的束缚,导致算法收敛精度不高的缺陷,提出了使用t-分布对局部搜索时的最优解进行变异操作.为最优解各维度增加t分布型随机扰动项,选取7个经典测试函数做仿真实验.实验结果表明:改进的蝙蝠算法在收敛精度和速度上有显著提升,说明通过对最优解实施t-分布扰动能够使算法摆脱局部极值的束缚,显著提高收敛精度. When the bat algorithm performs local search, random numbers are added to the optimal solution of each dimension. This mechanism makes the bat algorithm fall into local extremum, which leads to the low precision of the algorithm. In view of the shortcomings of the bat algorithm. This paper proposes a modified algorithm, which employed a student's t-distribution mutation operator to disturb the optimal solution of each dimension. The experimental results of seven function show that the modified algorithm improves the convergence precision and speed. Therefore, the modified algorithm which t-distribution mutation operator is added can improve the abilities of seeking the global excellent result and evolution speed.
作者 魏三强 张超
出处 《东北师大学报(自然科学版)》 CAS CSCD 北大核心 2017年第4期76-81,共6页 Journal of Northeast Normal University(Natural Science Edition)
基金 国家自然科学基金资助项目(61572036) 安徽省高校自然科学研究重点项目(KJ2016A781)
关键词 蝙蝠算法 T分布 收敛精度 群体多样性 智能算法 bat algorithm~ student's t-distributionl convergence precision~ population diversitylintelligence algorithm
  • 相关文献

参考文献14

二级参考文献120

  • 1康琦,汪镭,吴启迪.群体智能与人工生命[J].模式识别与人工智能,2005,18(6):689-697. 被引量:15
  • 2刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 3郑小霞,钱锋.一种改进的微粒群优化算法[J].计算机工程,2006,32(15):25-27. 被引量:23
  • 4张梅凤,邵诚,甘勇,李梅娟.基于变异算子与模拟退火混合的人工鱼群优化算法[J].电子学报,2006,34(8):1381-1385. 被引量:82
  • 5KARABOGA D. An idea based on honey bee swarm for numerical op- timization, Technical Report-TR06 [ R ]. Kayseri : Erciyes University, 2005.
  • 6KARABOGA D,AKAY B. A survey:algorithms simulating bee swarm intelligence [ J ]. Artificial Intelligence Review, 2009,31 ( 1- 4 ) : 61 - 85.
  • 7KRISHNANAND K N, GHOSE D. Detection of multiple source loca- tions using a glowworm metaphor with applications to collective robo- tics[ C ]//Proc of IEEE Swarm Intelligence Symposium. Piseataway: IEEE Computer Society,2005 : 84- 91.
  • 8YANG X S. nATURE Inspired metaheufistic algorithms [ M ]. Frome. UK : Lnniver Press. 2008 : 83- 96.
  • 9YANG Xin-she. Nature-inspired metaheuristic algorithms [ M ]. 2nd ed. Frome,UK:Luniver Press,2010: 97-104.
  • 10YANG Xin-she. A new metaheufistic bat-inspired algorithm [ M ]// GONZLEZ J R, PELTA D A. Nature Inspired Cooperative Strategies for Optimization. Berlin : Springer, 2010:65-74.

共引文献214

同被引文献41

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部