期刊文献+

汽车发动机用A356合金的热疲劳行为

Thermal Fatigue Behavior of A356 Alloy for Automotive Engine
下载PDF
导出
摘要 研究了温度幅分别为25~300℃、25~350℃和25~400℃时,铸态A356合金、细化变质A356合金、微合金化A356合金和T6态微合金化A356合金的热疲劳行为;分析了热裂纹萌生和生长的机理。结果表明,在相同温度幅下,热疲劳裂纹萌生寿命从大至小的顺序为:T6态微合金化A356合金、微合金化A356合金、细化变质A356合金、铸态A356合金;在热疲劳裂纹形成后,裂纹扩展早期阶段的裂纹生长速度要高于扩展后期;铸态A356合金和细化变质A356合金的热疲劳裂纹呈弯曲状且主要以沿晶方式扩展;微合金化A356合金和T6态微合金化A356合金的热疲劳裂纹更加平直和细小,且以穿晶-沿晶的混合方式扩展;T6态微合金化A356合金具有最佳的抗热疲劳性能。 The thermal fatigue behavior of as cast A356 alloy, refined modification A356 alloy, microalloyed A356 alloy and T6 mieroalloyed A356 alloy at temperature range of 25-300 ℃, 25-350℃and 25-400 ℃ were investigated, and the mechanism of thermal crack initiation and growth was analyzed. The results show that at the same temperature range, the thermal fatigue crack initiation life from large to small order is: T6 microalloyed A356 alloy, microalloyed A356 alloy, refined modification A356 alloy and as cast A356 alloy. The crack growth rate in the early stage of crack propagation is higher than that of later stage after thermal fatigue crack formation. The thermal fatigue cracks of as cast A356 alloy and refined modification A356 alloy are curved and expands mainly along the grain boundary. The thermal fatigue cracks ofmicroalloy A356 alloy and T6 microalloyed A356 alloy are more straight and small, which extends in the mixing mode of transgranular-intergranular form. T6 rnicroalloyed A356 alloy has the best thermal fatigue resistance.
出处 《热加工工艺》 CSCD 北大核心 2017年第24期111-114,118,共5页 Hot Working Technology
关键词 A356合金 细化变质 微合金化 T6热处理 热疲劳 A356 alloy refining modification microalloying T6 heat treatment thermal fatigue
  • 相关文献

参考文献3

二级参考文献29

  • 1王娟,王树奇,崔向红,王峰.V/C对铸造热作模具钢热疲劳性能的影响[J].铸造,2007,56(3):251-254. 被引量:9
  • 2Liao Bochao, Park Young Koo, Ding Hongsheng.Eff'ects ofrheoca- sting and heat treatment on microstructure and mechanical properties ofA356 alloy [J]. Materials Science and Engineering A, 2011, 528 : 986-995.
  • 3Wang Mingxing, Liu Ailong, Liu Zhongxia, ct al.Effect of hot humid environmental exposure on fatigue crack growth of adhesive-bonded aluminum A356 joints [J]. International Journal of Adhesion & Adhesives, 2013, 40: 1-10.
  • 4Peng Jihua, Tang Xiaolong, He Jianting, et al.Effect of heat treatment on rnicrostructure and tensile properties of A356 alloys [J]. Trans. Nonferrous Met. Soc. China, 2011, 21 : 1950-1956.
  • 5Prasada Rao A K, Das K, Murty B S, et al.AI-Ti-C-Sr master alloy-A melt inoculant fbr simultaneous grain refinement and modification of hypoeutectic AI-Si alloys [J]. J. of Allo. and Comp., 2009, 480: 49-51.
  • 6Mallapur D G, Kori S A, Rajendra Udupa K.lnfluenee ofTi, B and Sr on the microstructure and mechanical properties of A356 alloy [J]. J. Mater. Sci., 2011, 46: 1622-1627.
  • 7Cui X L, Wu Y Y, Gao T, et al.Preparation of a novel AI-3B-5Sr master alloy and its modification and refinement pertbnnance on A356 alloy [J]. Journal of Alloys and Compounds, 2014, 615: 906-911.
  • 8Azadi Mohammad, Mokhtari Shirazabad Mehdi.Heat treatment eff'ct on thermo-mechanical fatigue and low cycle fatigue behaviors of A356.0 aluminum alloy [J]. Materials and Design, 2013, 45: 279-285.
  • 9Zhu Man, Jian Zengyun, Yang Gencang, et aI.Effccts of T6 heat treatment on the microstructure, tensile properties, and fracture behavior of the modified A356 alloys [J]. Materials and Design, 2012, 36: 243-249.
  • 10Lee Choong do. Effect ofT6 heat treatment on the defect susceptibility of fatigue properties to microporosity variations in a low-pressure die-cast A356 alloy [J]. Mater. Sci. & Eng.A, 2013. 559: 496-505.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部