期刊文献+

基于随机模型的群体性突发事件舆情演化研究 被引量:10

Analysis on Public Opinion Evolution of Group Emergency Based on a Stochastic Model
原文传递
导出
摘要 舆情的演化传播一旦偏离了理性轨道,就会导致群体性突发事件的爆发,研究舆情演化的规律对于预防和控制群体性突发事件具有重要意义.群体突发事件的发生发展与舆情的传播是相互作用的,在分析二者之间作用关系的基础上,根据纯跳马氏过程的定义,建立了一种舆情演化的随机模型,进一步由非齐次马氏过程特征给出了模型的一种易于求解的简化模型.通过随机模型与简化模型的耦合偏差得到群体性突发事件舆情演化的一系列性质,并得到了舆情演化的最终聚集态势点,为政府及时掌握舆情演化的状态趋势,预防和控制突发事件的发生提供了理论支持.最后,通过算例分析验证了舆情演化模型的有效性和实用性. The evolution of public opinion will lead to the outbreak of group emer- gencies once it deviates from the rational track. The study of the mechanism of public opinion propagation is very important in the prevention and control of group emer- gencies. The evolution of group emergencies and public opinion are interrelated and interacted on each other. On the basis of analyzing the relationship between them, a stochastic model of public opinion evolution is established according to the definition of purely jumping Markov process. ~rthermore, a simplified model which is easy to solve is built by the Nonhomogeneous Markovian Process. A series of properties andthe final aggregation situation of the public opinion evolution are obtained through the coupling deviation between the stochastic model and the simplified one. And the theoretical support for the government to grasp the evolution of public opinion, pre- vent and control the emergencies is provided. Finally, the validity and practicability of public opinion evolution model are verified by a case study.
出处 《系统科学与数学》 CSCD 北大核心 2017年第11期2232-2244,共13页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(71171174)资助课题 河北省自然科学基金(G2014203219)资助课题
关键词 群体性突发事件 舆情演化 纯跳马氏过程 耦合偏差 聚集态势. Group emergency, public opinion evolution, purely jumping Markov pro-cess, coupling deviation, aggregation situation.
  • 相关文献

参考文献10

二级参考文献127

共引文献265

同被引文献104

引证文献10

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部