期刊文献+

变指标分数次Hardy算子的高阶交换子 被引量:2

Higher Order Commutators of Fractional Hardy Operators with Variable Index
下载PDF
导出
摘要 基于Hardy算子与BMO函数的性质及变指数Herz-Morrey空间的定义,运用H9lder不等式等估计,建立变指标的分数次Hardy算子与BMO函数生成的高阶交换子在变指数Herz-Morrey空间上的有界性,从而将经典分数次Hardy算子高阶交换子的有界性推广到变指标分数次Hardy算子的高阶交换子上,当变指数β(x)恒为常数时,变指标分数次Hardy算子即为经典的分数次Hardy算子. Based on the properties of Hardy operators and BMO functions, together with the definition of Herz-Morrey spaces with variable exponent, and by using the H61der inequalities, we established the boundedness of the higher order commutators generated by fractional Hardy operators with variable index and BMO functions on the Herz-Morrey spaces with variable exponent. The result generalized the boundedness of the higher order commutators of the classical fractional Hardy operators to the higher order commutators of fractional Hardy operators with variable index. When the variable exponentβ(x) was a constant, the fractional Hardy operators were the classical fractional Hardy operators.
作者 于云凤 赵凯
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第1期77-81,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11471176) 山东省自然科学基金(批准号:BS2014SF002)
关键词 变指标 分数次Hardy算子 BMO空间 交换子 HERZ-MORREY空间 variable index fractional Hardy operator BMO space commutator Herz-Morrey space
  • 相关文献

参考文献2

二级参考文献13

  • 1Zun-wei FU~(1,2) Zong-guang LIU~3 Shan-zhen LU~(1+) Hong-bin WANG~3 ~1 School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China,~2 Department of Mathematics,Linyi Normal University,Linyi 276005,China,~3 Department of Mathematics,China University of Mining and Technology (Beijing),Beijing 100083,China.Characterization for commutators of n-dimensional fractional Hardy operators[J].Science China Mathematics,2007,50(10):1418-1426. 被引量:41
  • 2陆善镇,杨大春.加权Herz型的Hardy空间及其应用[J].中国科学(A辑),1995,25(3):235-245. 被引量:26
  • 3Tolsa X. BMO, H^1, and Calderon-Zygmund Operators for Non-doubling Measures [ J]. Math Ann, 2001, 319 ( 1 ) : 89-149.
  • 4Morrey C B, Jr. On the Solutions of Quasi-linear Elliptic Partial Differential Equations [ J ]. Trans Amer Math Soc, 1938, 43(1): 126-166.
  • 5LU Shan-zhen, YANG Da-chun. The Continuity of Commutators on Herz-Type Spaces [ J]. Michigan Math J, 1997, 44(2) : 255-281.
  • 6LU Shan-zhen, YANG Da-chun, HU Guo-en. Herz Type Spaces and Their Application [ M]. Beijing: Science Press, 2008.
  • 7Berling A. Construction and Analysis of Some Convolution Algebras [ J]. Ann Inst Fourier Grenoble, 1964, 14(2) : 1-32.
  • 8LU Shan-zhen, XU Li-fang. Boundedness of Rough Singular Integral Operators on the Homogeneous Morrey-Herz Spaces [J]. Hokkaido Math J, 2005, 34(2): 299-314.
  • 9S1 Zeng-yan, ZHAO Fa-you, LIU De-wen. Boundedness of Marcinkiewicz Integral Commutator with Rough Kernels on Homogeneous Herz-Morrey Spaces [ J ]. Journal of Xinjiang University: Natural Science Edition, 2008, 25(2): 156-161.
  • 10Soria F, Weiss G. A Remark on Singular Integrals and Power Weights [ J]. Indiana Univ Math J, 1994, 43: 187-204.

共引文献5

同被引文献8

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部